
Target for TI C6000™ 3
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Target for TI C6000 User’s Guide

© COPYRIGHT 2002–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
July 2002 Online only Revised for Version 1.0 (Release 13)
January 2003 Online only Revised for Version 1.1
September 2003 Online only Revised for Version 2.0 (Release 13SP1+)
June 2004 Online only Revised for Version 2.1 (Release 14)
August 2004 Online only Revised for Version 2.2
October 2004 Online only Revised for Version 2.2.1 (Release 14SP1)
October 2004 Online only Revised for Version 2.0 (Release 13SP2)
December 2004 Online only Revised for Version 2.3 (Release 14SP1+)
March 2005 Online only Revised for Version 2.3.1 (Release 14SP2)
September 2005 Online only Revised for Version 2.4 (Release 14SP3)
March 2006 Online only Revised for Version 3.0 (Release 2006a)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)

Contents

Getting Started

1
What Is Target for TI C6000? . 1-2

Overview of Target for TI C6000 . 1-2
Suitable Applications . 1-3

Using This Guide . 1-4
Expected Background . 1-4

Configuration Information . 1-6

Platform Requirements . 1-8
Hardware and Operating System Requirements 1-8
Texas Instruments Software . 1-9

Targeting C6000 DSP Hardware

2
Introduction to Targeting . 2-3

Overview . 2-3
About the Tutorials . 2-3

TI C6000 and Code Composer Studio IDE 2-5
Using Code Composer Studio with Target for TI 6000 2-5
Supported Boards and Simulators . 2-6
Typical Hardware Setup for C6713 DSK in Models 2-8
Typical Hardware Setup for RTDX in Models 2-10

Targeting Tutorial — Single Rate Application 2-12
Overview . 2-12
Building the Audio Reverberation Model 2-13
Adding C6713 DSK Blocks to Your Model 2-14

v

Configuring Target for TI C6000 Blocks 2-16
Specifying Configuration Parameters for Your Model 2-20

Using the C6000lib Blockset . 2-24

Schedulers and Timing . 2-32
Timer-Based Versus Asynchronous Interrupt Processing . . 2-32
Synchronous Scheduling . 2-33
Asynchronous Scheduling . 2-34
Asynchronous Scheduler Examples 2-35
Uses for Asynchronous Scheduling 2-38
Scheduling Considerations . 2-42

Setting Real-Time Workshop Options for C6000
Hardware . 2-44

Setting Real-Time Workshop Pane Options 2-47
Accessing the Options . 2-47
Target Selection . 2-48
Documentation . 2-49
Build Process . 2-49
Custom Storage Class . 2-50
Debug Pane Options . 2-51
Optimization Pane Options . 2-53
Link for CCS Pane Options . 2-54
Overrun Indicator and Software-Based Timer 2-59
Target for TI C6000 Default Project Configuration —

custom_MW . 2-60

Model Reference and Target for TI C6000 2-61
Overview . 2-61
How Model Reference Works . 2-61
Using Model Reference with Target for TI C6000 2-62
Configuring Targets to Use Model Reference 2-64

Targeting Supported Boards . 2-66
Overview . 2-66
Typical Targeting Process . 2-67
Targeting the C6713 DSP Starter Kit 2-67
Configuring Your C6713DSK . 2-69
Confirming Your C6713DSK Installation 2-70

vi Contents

Simulink Models and Targeting . 2-71
Creating Your Simulink Model for Targeting 2-71
Blocks to Avoid in Your Models . 2-72

Targeting Tutorial II — A More Complex Application . . 2-74
Overview . 2-74
Working and Build Directories . 2-75
Setting Simulation Program Parameters 2-76
Selecting the Target Configuration 2-77
Building and Running the Program 2-83
Contents of the Build Directory . 2-84

Targeting Your C6713 DSK and Other Hardware 2-86
Overview . 2-86
Configuring Your C6713 DSK . 2-87
Confirming Your C6713 DSK Installation 2-87
Running Models on Your C6713 DSK 2-88

Creating Code Composer Studio Projects Without
Building . 2-91
Introduction . 2-91
Creating Projects in CCS Without Loading Files to Your

Target . 2-91

Targeting Custom Hardware . 2-93
Overview . 2-93
Typical Targeting Process . 2-96
Targeting a Custom Target . 2-98
Sections Pane . 2-106
To Create Memory Maps for Targets 2-112

Using Target for TI C6000 with Real-Time Workshop
Embedded Coder . 2-113
Introduction . 2-113
To Use the Embedded Coder Target File 2-114

vii

Targeting with DSP/BIOS Options

3
Introducing DSP/BIOS . 3-2

DSP/BIOS and Targeting Your TI C6000 DSP 3-4
Introduction . 3-4
DSP/BIOS Configuration File . 3-5
Memory Mapping . 3-5
Hardware Interrupt Vector Table . 3-6
Linker Command File . 3-6

Code Generation with DSP/BIOS . 3-7
Overview . 3-7
Generated Code Without and With DSP/BIOS 3-7

Profiling Generated Code . 3-12
Overview . 3-12
Profiling Subsystems . 3-13
Details About Timing and Profiling 3-14
Profiling Multitasking Systems . 3-15
The Profiling Report . 3-17
Interrupts and Profiling . 3-18
Reading Your Profile Report . 3-19
Definitions of Report Entries . 3-20
Profiling Your Generated Code . 3-22
To Enable Profiling for Your Generated Code 3-23
To Create Atomic Subsystems for Profiling 3-24

Using DSP/BIOS with Your Target Application 3-27
Enabling DSP/BIOS When You Generate Code 3-27

Using the C62x and C64x DSP Libraries

4
About the C62x and C64x DSP Libraries 4-2

C62x DSP Library . 4-2
C64x DSP Library . 4-3

viii Contents

Supported Platforms . 4-3
Characteristics Common to C62x and C64x Library

Blocks . 4-4

Fixed-Point Numbers . 4-5
Notation . 4-5
Signed Fixed-Point Numbers . 4-6
Q Format Notation . 4-6

Building Models . 4-10
Overview . 4-10
Converting Data Types . 4-10
Using Sources and Sinks . 4-11
Choosing Blocks to Optimize Code . 4-11

Blocks — By Category

5
Target Preferences (c6000tgtprefs) 5-2

RTDX Instrumentation (rtdxblocks) 5-2

C62x DSP (tic62dsplib) . 5-3
Conversions . 5-3
Filters . 5-3
Math and Matrices . 5-4
Transforms . 5-4

C64x DSP (tic64dsplib) . 5-5
Conversions . 5-5
Filters . 5-5
Math and Matrices . 5-6
Transforms . 5-7

C6416 DSK (c6416dsklib) . 5-7

C6455 EVM (c6455evmlib) . 5-8

ix

C6713 DSK (c6713dsklib) . 5-8

DM642 EVM (dm642evmlib) . 5-8

C6000 DSP Core Support (c6000dspcorelib) 5-9

Host Communication (hostcommlib) 5-9

C6000 DSP Communication (targetcommlib) 5-10

DSP/BIOS (dspbioslib) . 5-10

Blocks — Alphabetical List

6

Supported Hardware and Issues

A
Supported Hardware for Targeting A-2

Configuring the D.signT DSK-91C111 to Use TCP/IP and
UDP . A-3

Supported Processors . A-4

Requirements for the DM642 EVM A-6
About DM642 EVM Board Revisions A-6
Setting Up Code Composer Studio for the DM642 EVM . . A-7
About the XDS560 PCI-Bus JTAG Scan-Based

Emulator . A-8
Configuring the Target Preferences Block for Your DM642

EVM . A-9
Configuring the DM642 EVM Video ADC Block A-10

Continuing Issues with Target for TI C6000 A-11
Setting the Clock Speed on the C6713 DSK A-11

x Contents

Simulink Stop Block Works Differently When Not Using
DSP/BIOS Features . A-12

Index

xi

xii Contents

1

Getting Started

What Is Target for TI C6000? (p. 1-2) Introduces Target for TI C6000 and
some of the features it provides. Also
links to the supported hardware
section in Appendix A.

Using This Guide (p. 1-4) Introduces the organization of the
User’s Guide and summarizes each
section

Configuration Information (p. 1-6) Describes how to determine if you
have installed Target for TI C6000

Platform Requirements (p. 1-8) Talks about the software and
hardware required to use Target for
TI C6000, from both The MathWorks
and from Texas Instruments

1 Getting Started

What Is Target for TI C6000?

In this section...

“Overview of Target for TI C6000” on page 1-2

“Suitable Applications” on page 1-3

Overview of Target for TI C6000
Target for TI C6000™ integrates Simulink® and MATLAB® with Texas
Instruments eXpressDSP™ tools. The software collection lets you develop
and validate digital signal processing designs from concept through code.
Target for TI C6000 consists of the TI C6000 target that automates rapid
prototyping on your C6000 hardware targets. Target for TI C6000 uses C
code generated by Real-Time Workshop® and your TI development tools to
build an executable file for your intended processor. The Real-Time Workshop
build process loads the specified machine code to your board and runs the
executable file on the digital signal processor.

Target for TI C6000 lets you use Simulink to model digital signal processing
algorithms from blocks in the Signal Processing Blockset, and then use
Real-Time Workshop to generate (or build) ANSI C code targeted to the Texas
Instruments DSP development boards or Texas Instruments Code Composer
Studio Integrated Development Environment (CCS IDE).

Target for TI C6000 takes the generated C code and uses Texas Instruments
(TI) tools to build specific machine code depending on the TI board you use.
The build process downloads the targeted machine code to the selected
hardware and runs the executable on the digital signal processor. After
downloading the code to the board, your digital signal processing (DSP)
application runs automatically on your target.

Refer to “Supported Hardware for Targeting” on page A-2 for a list of the
targets that Target for TI C6000 supports. You can generate executable code
for any of the supported targets.

All the features provided by Code Composer Studio (CCS), such as tools
for editing, building, debugging, code profiling, and project management,
work to help you develop applications using MATLAB, Simulink, Real-Time

1-2

What Is Target for TI C6000?

Workshop, and your supported hardware. When you use this target, the build
process creates a new project in Code Composer Studio and populates the
project with the files the project requires.

If your TI-processor based hardware, whether built by TI or custom, supports
communications over JTAG and RTDX, you can use the Target for TI
C6000 with your hardware, enabling you to maximize the results of your
development time and effort.

This chapter provides sections that describe the following:

• Some of the digital signal processing applications you can develop with
Target for TI C6000, in the section “Suitable Applications” on page 1-3

• Prerequisites for using Target for TI C6000, in the section “Hardware and
Operating System Requirements” on page 1-8

Suitable Applications
Target for TI C6000 enables you to develop digital signal processing
applications that have any of the following characteristics:

• Single rate

• Multirate

• Multistage

• Adaptive

• Frame based

• Fixed point when you use the C62x or C64x blocks with C64xx and C67xx
targets.

Your supported boards, and Target for TI C6000, cover a range of standard
input sampling frequencies from 5.5 kHz to 48 kHz or more. The specific
supported input range depends on the board you own.

For any model to work in the targeting environment, you must select the
discrete-time solver in the Simulink Solver options. Targeting does not work
with continuous time solvers.

1-3

1 Getting Started

Using This Guide

Expected Background
This document introduces you to using Target for TI C6000 with Real-Time
Workshop to develop digital signal processing applications for the Texas
Instruments CC6000 family of DSP development hardware, such as the TI
TMS320C6713 DSP Starter Kit. To get the most out of this manual, you
should be familiar with MATLAB and its associated programs, such as Signal
Processing Blockset and Simulink. We do not discuss details of digital signal
processor operations and applications, except to introduce concepts related to
using the C6713 DSK or other targets. For more information about digital
signal processing, you may find one or more of the following books helpful:

• McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

• Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE Press, 1997.

• Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

• Mitra, S. K., Digital Signal Processing — A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

• Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley Publishing
Company, 1996.

For information about Code Composer Studio and Real-Time Data Exchange™
(RTDX™), refer to your Texas Instruments documentation for each product.
Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User
New users should read Chapter 1, “Getting Started”. This introduces Target
for TI C6000 environment—the required software and hardware, installation
requirements, and the board configuration settings that you need. You will
find descriptions of the blocks associated with the targeting software, and an
introduction to the range of digital signal processing applications that Target
for TI C6000 supports.

1-4

Using This Guide

If You Are an Experienced User
All users should read Chapter 2, “Targeting C6000 DSP Hardware” for
information and examples about using the new blocks and build software to
target your C6713 DSK. Two example models introduce the targeting software
and build files, and give you an idea of the range of applications supported
by Target for TI C6000. For C6713 DSK users, refer to “Configuring Your
C6713 DSK” on page 2-87for more information about installing and using
your C6713 DSK.

1-5

1 Getting Started

Configuration Information
To determine whether Target for TI C6000 is installed on your system, type
this command at the MATLAB prompt.

c6000lib

When you enter this command, MATLAB displays the C6000 block library
containing the following libraries that comprise the C6000 library:

• C6000 DSP Core Support

• C62x DSP Library

• C64x DSP Library

• C6416 DSK Board Support

• C6713 DSK Board Support

• DM642 EVM Board Support

• DSP/BIOS Library

• Host Communication Library

• RTDX Instrumentation

• Target Preferences

• TMDX326040 Daughtercard Support

If you do not see the listed libraries, or MATLAB does not recognize the
command, install Target for TI C6000. Without the software, you cannot
use Simulink and Real-Time Workshop to develop applications targeted to
the TI boards.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the products area at the MathWorks
Web site (http://www.mathworks.com).

1-6

http://www.mathworks.com

Configuration Information

To verify that CCS is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine,
in a form similar to the following listing.

Board Board Proc Processor
Processor

Num Name Num Name
Type

--- ---------------------------------- ---

0 C6x11 DSK (Texas Instruments) 0 CPU

TMS320C6x1x

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For Target
for TI C6000 to operate with CCS, the CCS IDE must be able to run on its own.

1-7

1 Getting Started

Platform Requirements

In this section...

“Hardware and Operating System Requirements” on page 1-8

“Texas Instruments Software” on page 1-9

Hardware and Operating System Requirements
To run Target for TI C6000, your host PC must meet the following hardware
configuration:

• Intel Pentium or Intel Pentium processor compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• DVD drive

• Windows 2000 or Windows XP.

You may need additional hardware, such as signal sources and generators,
microphones, oscilloscopes or signal display systems, and assorted audio
cables to test and evaluate your digital signal processing application on your
hardware.

Refer to your documentation from The MathWorks™ for more information on
installing the software required to support Target for TI C6000, as shown in
Prerequisites for Using Target for TI C6000 Software for Targeting on page
1-8. In all cases, Target for TI C6000 requires that you install one of the two
most recent versions of the required software.

Prerequisites for Using Target for TI C6000 Software for Targeting

Installed Product Additional Information

MATLAB Core software from The MathWorks

1-8

Platform Requirements

Prerequisites for Using Target for TI C6000 Software for Targeting
(Continued)

Installed Product Additional Information

Link for Code Composer
Studio™ Development
Tools

Software to enable communications between
MATLAB and the Code Composer Studio
development environment. Required for
Target for TI C6000 to work in code generation
and targeting.

Real-Time Workshop Software used to generate C code from
Simulink models

Simulink Software package for modeling, simulating,
and analyzing dynamic systems

Signal Processing Toolbox Software package for analyzing signals,
processing signals, and developing algorithms

Signal Processing Blockset Block libraries used by Simulink

For information about the software required to use Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site—http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Target for TI
C6000 requires that you install the Texas Instruments development tools and
software listed in the following table. Installing Code Composer Studio IDE
for the C6000 series installs the software shown.

Required TI Software for Targeting Your TI C6000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C6000 boards
from assembly code.

1-9

http://www.mathworks.com

1 Getting Started

Required TI Software for Targeting Your TI C6000 Hardware
(Continued)

Installed Product Additional Information

Compiler Compiles C code from the blocks in Simulink
models into object code (.obj). As a by-product
of the compilation process, you get assembly
code (.asm) as well.

Linker Combines various input files, such as object
files and libraries.

Code Composer Studio Texas Instruments integrated development
environment (IDE) that provides code
debugging and development tools.

TI C6000 miscellaneous
utilities

Various tools for developing applications for
the C6000 digital signal processor family.

Code Composer Setup
Utility

Program you use to configure your CCS
installation by selecting your target boards
or simulator.

In addition to the TI software, you need one or more of the following in any
combination:

• One or more Texas Instruments TMS320C6416 DSP Starter Kits

• One or more TMS320C6713 DSP Starter Kits

• One or more DM642 Evaluation Modules

• One or more boards from the supported hardware lists

• One or more configured simulators for any supported digital signal
processors

For up-to-date information about the software from The MathWorks
you need to use Target for TI C6000, refer to the MathWorks Web
site—http://www.mathworks.com. Check the Product area for Target for
TI C6000.

1-10

http://www.mathworks.com

2

Targeting C6000 DSP
Hardware

Introduction to Targeting (p. 2-3) Introduces Target for TI C6000 and
the tutorials in this chapter.

TI C6000 and Code Composer Studio
IDE (p. 2-5)

Discusses the blocks provided by
Target for TI C6000 for developing
models for TI C6000 DSP platforms.
Also lists the supported hardware.

Targeting Tutorial — Single Rate
Application (p. 2-12)

Takes you through the process of
creating models in Simulink and
generating code for your targets.
Uses the 6713 DSK as the example
board.

Using the C6000lib Blockset (p. 2-24) Describes the contents of the
C6000lib blockset—what blocks are
included and where, and briefly
describes how to configure the
blocks.

Schedulers and Timing (p. 2-32) Describes the timer-based and
asynchronous schedulers

Setting Real-Time Workshop Options
for C6000 Hardware (p. 2-44)

Provides the details on setting
the Real-Time Workshop options
when you generate code from your
Simulink models to TI hardware.

Setting Real-Time Workshop Pane
Options (p. 2-47)

2 Targeting C6000 DSP Hardware

Model Reference and Target for TI
C6000 (p. 2-61)

Introduces model reference and how
you use model reference with Target
for TI C6000

Targeting Supported Boards (p. 2-66) If you are targeting a C6713
DSK, this section details specific
information about using the target.

Simulink Models and Targeting
(p. 2-71)

Targeting Tutorial II — A More
Complex Application (p. 2-74)

Using a more complex model than
the previous tutorial, this exercise
walks you through code generation
for a multistage model.

Targeting Your C6713 DSK and
Other Hardware (p. 2-86)

If you are targeting a C6713
DSK, this section details specific
information about using the target,
although the process shown applies
to other targets equally.

Creating Code Composer Studio
Projects Without Building (p. 2-91)

You have the option of generating
code into a Code Composer Studio
project, rather than to hardware.
This section introduces the
Generate_CCS_project selection
in the Real-Time Workshop build
options.

Targeting Custom Hardware
(p. 2-93)

Discusses how you target processors
on boards that are not supported
boards. We call these boards custom
targets.

Using Target for TI C6000 with
Real-Time Workshop Embedded
Coder (p. 2-113)

Provides details about using Target
for TI C6000 with your Real-Time
Workshop Embedded Coder software
and embedded real-time target.

2-2

Introduction to Targeting

Introduction to Targeting

In this section...

“Overview” on page 2-3

“About the Tutorials” on page 2-3

Overview
The Target for TI C6000 lets you use Real-Time Workshop to generate a C
language real-time implementation of your Simulink model. You can compile,
link, download, and execute the generated code on the C6713 DSP Starter
Kit (DSK). In combination with the supported boards (refer to “Supported
Hardware for Targeting” on page A-2), your Target for TI C6000 software is
the ideal resource for rapid prototyping and developing embedded systems
applications for C6713 digital signal processors. Target for TI C6000 software
focuses on developing real-time digital signal processing (DSP) applications
for C6000 hardware. Additional hardware that we support is listed in
Appendix A, “Supported Hardware and Issues”.

Although the tutorials in this chapter focus on the C6713 DSK, the techniques
and processes apply to any supported hardware, with minor adjustments for
the processor involved.

This chapter describes how to use Target for TI C6000 to create and execute
applications on Texas Instruments C6000 development boards. To use the
targeting software, you should be familiar with using Simulink to create
models and with the basic concepts of Real-Time Workshop automatic code
generation. To read more about Real-Time Workshop, refer to your Real-Time
Workshop documentation.

About the Tutorials
In most cases, this chapter deals with the C6713 DSK targets. Fortunately, all
members of the C6000 family of processors that we support work in a manner
similar to the C6713 DSK. While you review the contents of this chapter, and
follow the tutorials, recall that the concepts and techniques or development
processes apply, with a few adjustments, to all supported C6000 processors
and boards.

2-3

2 Targeting C6000 DSP Hardware

Later sections discuss the Real-Time Workshop embedded coder and targeting
custom hardware.

Tip To make your figure easier to read, use easily distinguishable colors
and line styles.

2-4

TI C6000 and Code Composer Studio IDE

TI C6000 and Code Composer Studio IDE

In this section...

“Using Code Composer Studio with Target for TI 6000” on page 2-5

“Supported Boards and Simulators” on page 2-6

“Typical Hardware Setup for C6713 DSK in Models” on page 2-8

“Typical Hardware Setup for RTDX in Models” on page 2-10

Using Code Composer Studio with Target for TI 6000
Texas Instruments (TI) markets a complete set of software tools to use when
you develop applications for your C6000 hardware boards. This section
provides a brief example of how Target for TI C6000 uses Code Composer
Studio (CCS) Integrated Development Environment (IDE) with the Real-Time
Workshop and the C6000lib blockset.

Executing code generated from Real-Time Workshop on a particular target
in real time requires that Real-Time Workshop generate target code that is
tailored to the specific hardware target. Target-specific code includes I/O
device drivers and an interrupt service routine (ISR). Since these device
drivers and ISRs are specific to particular hardware targets, you must ensure
that the target-specific components are compatible with the target hardware.

To allow you to build an executable, TI C6000 uses the MATLAB links in Link
for Code Composer Studio Development Tools to invoke the code building
process within CCS. After you download your executable to your target and
run it, the code runs wholly on the target; you can access the running process
only from the CCS debugging tools or across a link for CCS or Real-Time Data
Exchange (RTDX). Otherwise the running process is not accessible.

Used in combination with your Target for TI C6000 and Real-Time Workshop,
TI products provide an integrated development environment that, once
installed, needs no additional coding.

2-5

2 Targeting C6000 DSP Hardware

Supported Boards and Simulators
Using the C6000 target provided by Target for TI C6000, you can generate
code to run on a range of boards, both evaluation modules and DSP starter
kits.

Refer to Appendix A, “Supported Hardware and Issues” for the latest
information about the hardware supported by the Target for TI C6000.

About Simulators
CCS offers many simulators for the C6713 and C6713 digital signal
processors, and other C6000 processors in the CCS Setup utility. Much of your
model and algorithm development efforts work with the simulators, such as
code generation. And, since Target for TI C6000 provides a software-based
scheduler, your models and generated code run on the simulators just as
they do on your hardware. You can use the RTDX links with the simulators
as well. For more information about the simulators in CCS, refer to your
CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. To target C6713DSK boards, your simulator
must contain a C6713 processor, not just a C6xxx simulator. Simulators must
match the target processor because the codecs on the board are not the same
and the simulator needs to identify the correct codec. Correctly matching your
simulator to your hardware ensures that the memory maps and registers
match those of your intended target signal processor.

In general, use the device cycle accurate simulators provided by CCS Setup
to simulate your processor.

Using a Simulator
You can use the simulator alone to develop projects with Target for TI C6000.
The simulator can generate and handle timer interrupts properly to enable
your generated code to run.

To use the simulator, you configure the target preferences block in your model
to use the simulator target.

2-6

TI C6000 and Code Composer Studio IDE

1 Click the target preferences block in your model and select Edit > Open
Block from the menu bar for your model. This step opens the C6000 Target
Preferences dialog box for your target.

2 On the Board info pane in the C6000 Target Preferences dialog box, select
Simulator.

3 Click Apply to apply the change, or click OK to apply the new setting and
close the dialog box.

There is one manual step to do to use the simulator. After you generate code
from a model to a CCS project, you must modify the project by setting the
RTDX Mode in CCS to Simulator.

In addition, you must substitute the file rtdxsim.lib instead of the default
rtdx.lib library file in the project. Accomplish this project file modification
by navigating to the Include Libraries option in CCS:

BuildOptions > Linker > Basic

and replacing the file as needed in the Include Libraries option.

After you make this file substitution, you cannot use the Line In and Line
Out ADC block options or any other target-specific board-level blocks. You
can substitute any discrete-time sources and sinks from Simulink, Signal
Processing Blockset, or other blockset. When there are no codec blocks (ADC
or DAC blocks) in your model, Target for TI C6000 configures an on-chip
timer to trigger the system at the appropriate sample time. As a result,
whatever happens in the model is completely up to you, the user, as long as
you provide the discrete sample time.

Using RTDX with a Simulator
If you are using DSP/BIOS in your project, you configure RTDX by opening
the DSP/BIOS Config properties in the project tree in CCS, opening the
project .cdb file, and navigating to Input/Output. In the Input/Output
properties you set the RTDX mode to Simulator.

2-7

2 Targeting C6000 DSP Hardware

If your project is not using DSP/BIOS, you only have to change the RTDX
mode when you are using RTDX blocks in your model. Otherwise, RTDX is
not needed.

Typical Hardware Setup for C6713 DSK in Models
The next figure presents a block diagram of the typical setup for the inputs
and output for the C6713 DSK.

After you have installed one or more of the supported development boards
shown in Appendix A, “Supported Hardware and Issues”, start MATLAB.
At the MATLAB command prompt, type c6000lib. This opens a Simulink
blockset named C6000lib that includes libraries that contain blocks predefined
for C6000 input and output devices:

Library Description

“C6000 DSP Communication
(targetcommlib)” on page 5-10

Blocks that provide UDP and TCP/IP
communications capability on the
target. Includes byte manipulation
blocks.

“C6000 DSP Core Support
(c6000dspcorelib)” on page 5-9

Blocks for managing memory and task
scheduling on C6000-based targets.

2-8

TI C6000 and Code Composer Studio IDE

Library Description

“C62x DSP (tic62dsplib)” on page
5-3

Blocks that provide C62x-optimized
algorithms such as filtering and matrix
manipulation.

“C64x DSP (tic64dsplib)” on page
5-5

Blocks that provide C64x-optimized
algorithms such as filtering and matrix
manipulation.

“C6416 DSK (c6416dsklib)” on
page 5-7

Blocks to configure the peripherals on
the C6416 DSK.

“C6455 EVM (c6455evmlib)” on
page 5-8

Blocks to configure the SRIO
communications on the C6455 EVM.

“C6713 DSK (c6713dsklib)” on
page 5-8

Blocks to configure the peripherals on
the C6713 DSK.

“DM642 EVM (dm642evmlib)” on
page 5-8

Blocks to configure the peripherals on
the DM642 EVM and configure video
capture.

“DSP/BIOS (dspbioslib)” on page
5-10

Blocks that provide scheduling
management using DSP/BIOS.

“Host Communication
(hostcommlib)” on page 5-9

Blocks that configure the target for
UDP communications. Includes byte
manipulation blocks.

“RTDX Instrumentation
(rtdxblocks)” on page 5-2

Blocks that provide RTDX
instrumentation for communicating
between your target and host.

“Target Preferences
(c6000tgtprefs)” on page 5-2

Blocks that configure models for
specific targets or custom C6000
hardware.

Each board-based block library, such as C6713 DSK contains a version of
each of these blocks:

• ADC block

• DAC block

2-9

2 Targeting C6000 DSP Hardware

• DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

• LED block

• Reset block

Blocks from these libraries are associated with your boards and hardware.
As needed, add the devices to your model. If you choose not to include either
an ADC or DAC block in your model (they are available in the target specific
libraries), Target for TI C6000 provides a timer that produces the interrupts
required for timing and running your model, either on your hardware target
or on a simulator.

Typical Hardware Setup for RTDX in Models
In addition to the blocks for specific boards, the C6000lib blockset includes
the library RTDX Instrumentation that contains RTDX input and output
blocks that apply to all C6000 development boards and the C6000 DSP Core
support library that contain blocks that let you transfer data to and from
memory on any C6000-based target. Like the RTDX blocks, the core support
blocks are not hardware dependent.

With your model open, select Configuration Parameters from the
Simulation option to open the Configuration Parameters dialog box. In the
Select tree, click Real-Time Workshop. You must specify the appropriate
versions of the system target file and template makefile. For the C6713 DSK,
for example, in the Real-Time Workshop pane of the dialog box, specify

ccslink_grt.tlc

to select the correct target file in Real-Time Workshop system target file.
Or click Browse and select ccslink_grt.tlc from the list of targets, or
whichever target best matches your hardware.

With this configuration, you can generate a real-time executable and
download it to the TI development boards. You do this by clicking Build on
the Real-Time Workshop pane. Real-Time Workshop automatically generates
C code and inserts the I/O device drivers as specified by the ADC and DAC
blocks in your block diagram, if any.

2-10

TI C6000 and Code Composer Studio IDE

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to
your target language compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the template makefile and block parameter
dialog box entries get combined to form the target makefile for your TI C6000
board. Your makefile invokes the TI cross-compiler to build an executable file.

If you selected the Build and execute build action, the executable file is
automatically downloaded over the parallel port to your C6713 DSK. After
downloading the executable file to the target, the build process runs the file
on the board’s DSP.

2-11

2 Targeting C6000 DSP Hardware

Targeting Tutorial — Single Rate Application

In this section...

“Overview” on page 2-12

“Building the Audio Reverberation Model” on page 2-13

“Adding C6713 DSK Blocks to Your Model” on page 2-14

“Configuring Target for TI C6000 Blocks” on page 2-16

“Specifying Configuration Parameters for Your Model” on page 2-20

Overview
In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in
a large empty room.

You can choose to create the Simulink model for this tutorial from blocks in
Signal Processing Blockset and Simulink block libraries, or you can find the
model in Target for TI C6000 demos. For this example, you see the model as it
appears in the demonstration program. The demonstration model name is
c6713dskafxr.mdl as shown in the next figure. Open this model by entering
c6713dskafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector
on your C6713 DSK, and speakers and an oscilloscope connected to the
Line Out connector on your C6713 DSK. To test the model, speak into the
microphone and listen to the output from the speakers. You can observe the
output on the oscilloscope as well.

To download and run your model on your C6713 DSK, complete the following
tasks:

1 Use Simulink blocks, Signal Processing Blockset blocks, and blocks from
other blocksets to create your model application.

2 Add Target for TI C6000 blocks that let your signal sources and output
devices communicate with your C6713 DSK—the C6713 DSK ADC and

2-12

Targeting Tutorial — Single Rate Application

C6713 DSK DAC blocks that you find in Target for TI C6000 c6000lib
blockset.

3 Add the C6713DSK target preferences block from the Target Preferences
library to your model. Verify and set the block parameters for your
hardware. In most cases, the default settings work fine.

If you are using a C6713 simulator target, select Simulator on the Board
info pane of the target preferences block.

4 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Real-Time Workshop options such as target configuration and target
compiler selection

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6713 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6713DSK”
on page 2-69 in this guide before continuing this tutorial.

Building the Audio Reverberation Model
To build the model for audio reverberation, follow these steps:

1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

2-13

2 Targeting C6000 DSP Hardware

Look for the Integer Delay block in the Signal Operations library of the
Signal Processing Blockset. You do not need to add the input and output
signal lines at this time. When you add the C6713 DSK blocks in the next
section, you add the input and output to the sum blocks.

4 Save your model with a suitable name before continuing.

Adding C6713 DSK Blocks to Your Model
So that you can send signals to your C6713 DSK and get signals back from
the board, Target for TI C6000 includes a block library containing five blocks
designed to work with the codec on your C6713 DSK:

• Input block (C6713 DSK ADC)

• Output block (C6713 DSK DAC)

• Light emitting diode block (C6713 DSK LED)

• Software reset block (Reset C6713 DSK)

• DIP switch block (C6713 DSK DIP Switch)

Entering c6713dsklib at the MATLAB prompt opens this window showing
the library blocks. This block library is included in Target for TI C6000
c6000lib blockset in the Simulink Library browser.

2-14

Targeting Tutorial — Single Rate Application

The C6713 DSK ADC and C6713 DSK DAC blocks generate code that
configures the codec on your C6713 DSK to accept input signals from the input
connectors on the board, and send the model output to the output connector
on the board. Essentially, the C6713 DSK ADC and C6713 DSK DAC blocks
add driver software that controls the behavior of the codec for your model.

To add C6713 DSK target blocks to your model, follow these steps:

1 Double-click Target for TI C6000 in the Simulink Library browser to open
the c6000lib blockset.

2 Click the library C6713 DSK Board Support to see the blocks available
for your C6713 DSK.

3 Drag and drop C6713 DSK ADC and C6713 DSK DAC blocks to your model
as shown in the figure.

2-15

2 Targeting C6000 DSP Hardware

4 Connect new signal lines as shown in the figure.

5 Finally, from the TI C6000 Target Preferences block library, add the
C6713DSK Target Preferences block to the model. Notice that it is not
connected to any other block in the model.

Configuring Target for TI C6000 Blocks
To configure Target for TI C6000 blocks in your model, follow these steps:

1 Click the C6713 DSK ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

• Clear the Stereo check box.

• Select the +20 dB mic gain boost check box.

From the list, set Sample rate to 8000.

• Set Codec data format to 16-bit linear.

• For Output data type, select Double from the list.

• Set Scaling to Normalize.

• Set Source gain to 0.0.

• Enter 64 for Samples per frame.

2-16

Targeting Tutorial — Single Rate Application

Include a signal path directly from the input to the output so you can
display both the input signal and the modified output signal on the
oscilloscope for comparison.

4 For C6713 DSK ADC source, select Mic In.

5 Click OK to close the C6713 DSK ADC dialog box.

6 Now set the options for the C6713 DSK DAC block.

• Set Codec data format to 16-bit linear.

• Set Scaling to Normalize.

• For DAC attenuation, enter 0.0.

• Set Overflow mode to Saturate.

7 Click OK to close the dialog box.

8 Click the C6713DSK Target Preferences block.

9 Select Block Parameters from the Simulink Edit menu.

10 Verify the parameter settings for the C6713 DSK target. The figures below
show the proper values.

2-17

2 Targeting C6000 DSP Hardware

Board info Settings

2-18

Targeting Tutorial — Single Rate Application

Memory Settings

2-19

2 Targeting C6000 DSP Hardware

Section Settings

You have completed the model. Now configure the Real-Time Workshop
options to build and download your new model to your C6713 DSK.

Specifying Configuration Parameters for Your Model
The following sections describe how to build and run real-time digital signal
processing models on your C6713 DSK. Running a model on the target starts
with configuring and building your model from the Configuration Parameters
dialog box in Simulink.

Setting Simulink Configuration Parameters
After you have designed and implemented your digital signal processing
model in Simulink, complete the following steps to set the configuration
parameters for the model:

2-20

Targeting Tutorial — Single Rate Application

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Target for TI C6000.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). Generated code does not honor this setting if you set a stop
time. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Target Build Options
To configure Real-Time Workshop to use the correct target files and to compile
and run your model executable file, you set the options in the Real-Time
Workshop category of the Configuration Parameters dialog box. Follow these
steps to set the Real-Time Workshop options to target your C6713 DSK:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the system target file for
C6000 targets—ccslink_grt.tlc. It may already be the selected target.

Clicking Browse opens the System Target File Browser.

3 On the System Target File Browser, select the system target file
ccslink_grt.tlc and click OK to close the browser.

2-21

2 Targeting C6000 DSP Hardware

Real-Time Workshop updates the Template makefile and
Makecommand options with the appropriate files based on your system
target file selection.

4 From the Select tree, choose Link for CCS to specify code generation
options that apply to the C6713 DSK target.

5 Under Code Generation, select the Inline run-time library functions
option. Clear the other options.

6 Keep the default setting for the options in Project options.

7 Under Target Selection, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle (optional).

8 Change the category on the Select tree to Hardware Implementation.

9 Check that Byte ordering is set to Little endian.

10 Change the category again to Link for CCS.

11 Set the following Real-Time Workshop run-time options:

• Build action: Build_and_execute.

• Interrupt overrun notification method: Print_message.

You have configured the Real-Time Workshop options that let you target your
C6713 DSK. You may have noticed that you did not configure a few Real-Time
Workshop categories on the Select tree, such as Comments, Symbols, and
Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code.

Building and Executing Your Model on Your C6713 DSK
After you set the configuration parameters and configure Real-Time
Workshop to create the files you need, you direct Real-Time Workshop to
build, download, and run your model executable on your target:

2-22

Targeting Tutorial — Single Rate Application

1 Change the category to Real-Time Workshop on the Configuration
Parameters dialog box.

2 Clear Generate code only and click Build to generate and build an
executable file targeted to your C6713 DSK.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by
the C6713 DSP on your C6713 DSK, and then downloads the executable
file to the target and runs the file.

3 To stop model execution, click the Reset C6713 DSK block or use the Halt
option in CCS. You could type halt from the MATLAB command prompt
as well.

Testing Your Audio Reverb Model
With your model running on your C6713 DSK, speak into the microphone
you connected to the board. The model should generate a reverberation
effect out of the speakers, delaying and echoing the words you speak into the
mike. If you built the model yourself, rather than using the supplied model
c6713dskafxr, try running the demonstration model to compare the results.

2-23

2 Targeting C6000 DSP Hardware

Using the C6000lib Blockset
Target for TI C6000 block library C6000lib comprises block libraries that
contain blocks designed for targeting specific boards or using RTDX. The
libraries are

Library Description

“C6000 DSP Communication
(targetcommlib)” on page 5-10

Blocks that provide UDP and TCP/IP
communications capability on the
target. Includes byte manipulation
blocks.

“C6000 DSP Core Support
(c6000dspcorelib)” on page 5-9

Blocks for managing memory and
task scheduling on C6000-based
targets.

“C62x DSP (tic62dsplib)” on page 5-3 Blocks that provide C62x-optimized
algorithms such as filtering and
matrix manipulation.

“C64x DSP (tic64dsplib)” on page 5-5 Blocks that provide C64x-optimized
algorithms such as filtering and
matrix manipulation.

“C6416 DSK (c6416dsklib)” on page
5-7

Blocks to configure the peripherals
on the C6416 DSK.

“C6455 EVM (c6455evmlib)” on page
5-8

Blocks to configure the SRIO
peripherals on the C6455 EVM.

“C6713 DSK (c6713dsklib)” on page
5-8

Blocks to configure the peripherals
on the C6713 DSK.

“DM642 EVM (dm642evmlib)” on
page 5-8

Blocks to configure the peripherals
on the DM642 EVM and configure
video capture.

“DSP/BIOS (dspbioslib)” on page
5-10

Blocks that provide scheduling
management using DSP/BIOS.

“Host Communication
(hostcommlib)” on page 5-9

Blocks that configure the target for
UDP communications. Includes byte
manipulation blocks.

2-24

Using the C6000lib Blockset

Library Description

“RTDX Instrumentation
(rtdxblocks)” on page 5-2

Blocks that provide RTDX
instrumentation for communicating
between your target and host.

“Target Preferences (c6000tgtprefs)”
on page 5-2

Blocks that configure models for
specific targets or custom C6000
hardware.

Each block library appears in one of the next figures. The sections after the
figures review the configuration options for blocks in the EVM and DSK block
libraries. For more information about RTDX, refer to in your Link for Code
Composer Studio documentation.

Each board-based block library contains a version of each of these blocks:

• ADC block

• DAC block

• DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

• LED block

• Reset block

Similarities in the C6000 boards result in the ADC, DAC, DIP Switch, LED,
and Reset blocks for the C6000-based boards being almost identical. Each
section about a block, such as the ADC block, presents all possible options
for the block, noting when an option applies only to a board-specific version
of the ADC block.

2-25

2 Targeting C6000 DSP Hardware

Here is the main library of blocks for Target for TI C6000.

2-26

Using the C6000lib Blockset

The next figure shows the C6713 DSK block library.

The RTDX Library contains the blocks in the figure.

For the core support blocks, the DSP Core Support library appears in the
next figure.

2-27

2 Targeting C6000 DSP Hardware

The C6455 EVM library blocks appear in the next figure.

2-28

Using the C6000lib Blockset

The following figure shows the DM642 EVM library contents.

2-29

2 Targeting C6000 DSP Hardware

2-30

Using the C6000lib Blockset

In the next figure you see the blocks in the C6416 DSK library.

2-31

2 Targeting C6000 DSP Hardware

Schedulers and Timing

In this section...

“Timer-Based Versus Asynchronous Interrupt Processing” on page 2-32

“Synchronous Scheduling” on page 2-33

“Asynchronous Scheduling” on page 2-34

“Asynchronous Scheduler Examples” on page 2-35

“Uses for Asynchronous Scheduling” on page 2-38

“Scheduling Considerations” on page 2-42

Timer-Based Versus Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model. This description
of scheduling and timing applies both to generated code operation that
incorporates DSP/BIOS real-time operating system (RTOS) and basic code
generation mode where DSP/BIOS RTOS is not included.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

2-32

Schedulers and Timing

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the Target for TI C6000
library to your model, listed here.

Blocks in the DSP/BIOS Library.

- HWI — Create interrupt service routine on C6000 hardware target.

- Task — Create task that runs as separate DSP/BIOS thread.

- Triggered Task — Create asynchronously triggered task.

Blocks in the C6000 DSP Core Support Library.

- Hardware Interrupt — Generate interrupt service routine. Same as the
DSP/BIOS interrupt block.

- CPU timer — Generate interrupt service routine.

- Idle Task — Create free-running background task

• If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify
the periodic sample times. Generating code from a model like this
automatically enables and manages a timer interrupt. The periodic timer
interrupt clocks the entire model.

Synchronous Scheduling
For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced by
an interrupt service routine (ISR). The code generated for Target for TI C6000
uses Timer 1 in DSP/BIOS mode and bare-board mode. Timer 1 is configured
so that the base rate sample time for the coded process corresponds to the
interrupt rate. Target for TI C6000 calculates and configures the timer period
to ensure the desired sample rate.

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2 second.

2-33

2 Targeting C6000 DSP Hardware

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time 0.

Asynchronous Scheduling
Target for TI C6000 facilitates modeling and automatically generating code
for asynchronous systems by using the following scheduling blocks:

• Hardware Interrupt and Idle Task blocks for bare-board code generation
mode

• DSP/BIOS Hardware Interrupt, DSP/BIOS Task, and DSP/BIOS Triggered
Task blocks for DSP/BIOS code generation mode

C6000 Hardware Interrupt blocks enable selected hardware interrupts for the
TI TMS320C6000 DSP, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the C6000 Hardware Interrupt block to the
control input of a function-call subsystem, the generated subsystem code is
called from the ISRs each time the interrupt is raised.

The C6000 Idle Task block specifies one or more functions to execute as
background tasks in the code generated for the model. The functions are
created from the function-call subsystems to which the Idle Task block is
connected.

The DSP/BIOS Hardware Interrupt block (in DSP/BIOS code generation
mode) has the same functionality as the bare-board C6000 Hardware
Interrupt block. The configuration and low-level handling of the hardware
interrupts is implemented through DSP/BIOS using DSP/BIOS Hardware
Interrupt module and DSP/BIOS dispatcher.

DSP/BIOS Task blocks (DSP/BIOS code generation mode) spawn free-running
tasks as separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

2-34

Schedulers and Timing

DSP/BIOS Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a DSP/BIOS Hardware Interrupt block. This block is connected
to a DSP/BIOS Triggered Task block.

Asynchronous Scheduler Examples
Now you can use an asynchronous (real-time) scheduler for your target
application. Earlier versions of Target for TI C6000 used a synchronous CPU
timer interrupt-driven scheduler. With the asynchronous scheduler you can
define interrupts and tasks to occur when you want them to by using blocks in
the following libraries:

• C6000 DSP Core Support

• DSP/BIOS Library

Also, you can schedule multiple tasks for asynchronous execution using the
blocks in the C6000 DSP Core Support and DSP/BIOS Library block libraries.

The following figures show a model updated to use the asynchronous
scheduler rather than the synchronous scheduler.

Before

2-35

2 Targeting C6000 DSP Hardware

After

Model Inside the Function Call Subsystem Block

Compatibility Consideration. The V3.0 changes in the real-time scheduler
can break some existing multirate models that contain codec blocks such as
the ADC and DAC. The models affected contain at least one sample rate that
is faster than the codec block rate. You do not run into this problem if all rates
in the model are lower than the codec rate.

The new scheduler provides improved control for your processing and
improved performance. You should recast all of your models to use the new
asynchronous scheduler. To update your models, embed the entire processing
algorithm or system in a function-call subsystem driven by a DSP/BIOS Task
or Idle Task block from the DSP/BIOS Library library.

An example of such a model contains a combination of an ADC block and a
DAC block, with a processing algorithm between them that executes at the
higher rate. If you run code generated for such a model in multitasking or
auto solver mode, you might hear occasional audio glitches or your program
may overrun. The exact symptom of the problem depends on the run-time
overrun action setting in the TIC6000 Code Generation options.

2-36

Schedulers and Timing

The following model demonstrates one possible model configuration that can
demonstrate the audio problems.

This multirate model uses two interrupts to control real-time execution of the
generated code:

• A DMA interrupt to drive the execution of the code for ADC and DAC blocks

• A timer interrupt to drive the execution of the code for the FIR filter at an
increased sample rate

In earlier product versions, the generated scheduler constantly synchronized
the DMA and timer interrupts to ensure they remained in sync with one
another, despite the possible clock drift with interrupts that are recorded by
independent clock sources.

With the new real-time scheduler, the product does not synchronize the ADC
and timer interrupts.

One interrupt may get out of sync with the other, with the time difference
between them (drift) fluctuating with changes in the independent interrupt
clocks. When the drift reaches a critical threshold, processing may skip an
instance of a lower-priority task.

At that point, the interrupts are back in sync and the process continues.
Losing synchronization between the interrupts can corrupt the audio signal or
lead to an interrupt overrun.

To avoid the audio problems in an existing model that you cannot update to
the new scheduler, set the run-time overrun action for the model to either
None or Notify_and_continue to prevent the program from overrunning.

2-37

2 Targeting C6000 DSP Hardware

Uses for Asynchronous Scheduling
The following sections present common cases for the scheduling blocks
described in the previous sections.

Free-Running DSP/BIOS Task
The following model illustrates a case where a reverberation algorithm runs
in the context of a free-running DSP/BIOS task.

Normally, the algorithms in this type of task run in free-running mode, that
is, they run repetitively and indefinitely. However, in this function-call
subsystem (shown in detail in the following figure), ADC and DAC blocks
suspend the execution of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC
device driver layer separate from the task function manages the triggers
condition. This device driver layer uses a direct memory access (DMA)
interrupt to signal to the DSP/BIOS task when ADC and DAC data become
available for the task function.

2-38

Schedulers and Timing

This model also illustrates how synchronous and asynchronous tasks can
work together. The code generated for C6416 DSK DIP Switch block runs
as a periodic task at the rate of 0.01 s. This is the only periodic task in the
model. It runs out of the context of a DSP/BIOS task scheduled via a timer
interrupt configured to go off every 0.01 second.

In general, Simulink blocks that specify nonzero sample rates, such as the
DIP Switch block, are scheduled by the TIC6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

To ensure data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm. This transition is
required because the blocks belong to different rate groups. If the synchronous
and asynchronous parts of the model do not interact, the Rate Transition
blocks are not needed.

2-39

2 Targeting C6000 DSP Hardware

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. However, the ADC and DAC blocks in
this subsystem run in blocking mode. As a result, subsystem execution of
the reverberation function is the same as the subsystem described for the
Free-Running DSP/BIOS Task. It is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

2-40

Schedulers and Timing

Hardware Interrupt Triggered DSP/BIOS Task
The next model illustrates a case where a function (Location Command) runs
in the context of a hardware interrupt-triggered DSP/BIOS task.

The DSP/BIOS Hardware Interrupt block installs an ISR function that signals
a DSP/BIOS task to run when the ISR detects an RTDX interrupt. Signaling
between the ISR and DSP/BIOS triggered task occurs via semaphores. This
task receives an RTDX message carrying the location command for the
downstream Text Insert block in the Text Overlay from the host computer.

The blocks running inside the Location Command and Text Overlay
subsystems are shown in the following figure.

The text overlay subsystem is executed as for the Free-Running DSP/BIOS
Task. A Rate Transition block connects the two subsystems that run at two
different asynchronous rates to ensure data integrity. The execution of two
asynchronous rates is ordered based on the priority settings for the DSP/BIOS
Task blocks.

2-41

2 Targeting C6000 DSP Hardware

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

In this model, the C6000 Hardware Interrupt block installs a task that runs
when it detects an external interrupt. This task then toggles an external
C6416DSK LED on or off.

Scheduling Considerations
When you use the DSP/BIOS task blocks for scheduling, either the DSP/BIOS
Task block or the DSP/BIOS Triggered Task block, you must take care to
avoid some common scheduling pitfalls.

First, the DSP/BIOS operating system always executes the task with the
highest priority. Contrast this execution scheme with that of some other
real-time operating systems (RTOS) where each task gets its fair share of
processing time. Therefore, depending on the situation, there may be cases

2-42

Schedulers and Timing

where lower-priority tasks never execute because a higher priority task is
never blocked.

A DSP/BIOS task blocks only when a blocking device driver block is included
in the function call subsystem the task is executing, such as ADC/DAC blocks
and C6000 UDP Receive blocks. If a particular DSP/BIOS task executes
a function call subsystem that does not include any device driver blocks,
and this particular task has the highest priority, it never releases the CPU,
effectively disabling all other lower priority tasks in the application.

For more information about asynchronous schedulers, refer to the
“Asynchronous Support” chapter in your Real-Time Workshop documentation
in the online Help system.

2-43

2 Targeting C6000 DSP Hardware

Setting Real-Time Workshop Options for C6000 Hardware
Before you generate code with the Real-Time Workshop, set the fixed-step
solver step size and specify an appropriate fixed-step solver if the model
contains any continuous-time states. At this time, you should also select an
appropriate sample rate for your system. Refer to your Real-Time Workshop®

User’s Guide documentation for additional information.

Note Target for TI C6000 does not support continuous states in Simulink
models for code generation. In the Solver options in the Configuration
Parameters dialog box, you must select discrete (no continuous states)
as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog
box lets you set numerous options for the real-time model. To open the
Configuration Parameters dialog box, select Simulation > Configuration
Parameters from the menu bar in your model.

2-44

Setting Real-Time Workshop Options for C6000 Hardware

The following figure shows the Real-Time Workshop categories when you are
using Target for TI C6000.

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop builds and runs your model. The first
categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop targets including the target and always appear on the list.

The last categories under Real-Time Workshop are specific to the Target for
TI C6000 target ccslink_grt.tlc and appear when you select any TI C6000
target.

• TI C6000 code generation — target-specific code generation options.

2-45

2 Targeting C6000 DSP Hardware

• TI C6000 compiler/linker — target-specific compiler and linker options.
Also includes the target-specific run-time options.

When you select your target in Target Selection on the Real-Time
Workshop pane, the options change in the tree. For Target for TI C6000, the
target to select is ccslink_grt.tlc. Selecting either the ccslink_grt.tlc or
ccslink_ert.tlc adds the TI C6000-specific options to the Select tree.

The following sections present each Real-Time Workshop category and the
options available in each.

2-46

Setting Real-Time Workshop Pane Options

Setting Real-Time Workshop Pane Options

In this section...

“Accessing the Options” on page 2-47

“Target Selection” on page 2-48

“Documentation” on page 2-49

“Build Process” on page 2-49

“Custom Storage Class” on page 2-50

“Debug Pane Options” on page 2-51

“Optimization Pane Options” on page 2-53

“Link for CCS Pane Options” on page 2-54

“Overrun Indicator and Software-Based Timer” on page 2-59

“Target for TI C6000 Default Project Configuration — custom_MW” on
page 2-60

Accessing the Options
Use the options in the Select tree under Real-Time Workshop to perform
the following configuration tasks.

• Determine your target, either C6000 or some other target if you are not
using Target for TI C6000.

• Select your documentation needs.

• Configure your build process.

• Specify whether to use custom storage classes.

When you select the appropriate C6000 target (ccslink_grt.tlc) in System
target file, you enable automatic board selection for your model. After that,
opening the Configuration Parameters dialog box for your model triggers
the automatic board and processor selection tool, which searches for your
C6713 DSK. If MATLAB and CCS cannot find a board that matches the
C6713 DSK designation, you see an error message dialog box.

2-47

2 Targeting C6000 DSP Hardware

Target Selection

System target file
Clicking Browse opens the Target File Browser where you select
ccslink_grt.tlc as your Real-Time Workshop System target file for
Target for TI C6000. When you select your target configuration, Real-Time
Workshop chooses the appropriate system target file, template make file, and
make command. You can also enter the target configuration filename, and
Real-Time Workshop fills in the Template makefile and Make command
selections.

If you are using the Real-Time Workshop Embedded Coder software, select
the ccslink_ert.tlc target in System target file.

2-48

Setting Real-Time Workshop Pane Options

Documentation

Generate HTML report
After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code
generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use

docsearch 'Generate HTML report'

at the MATLAB prompt to get more information.

When you select Include hyperlinks to model, your HTML report adds
hyperlinks to various features in your Simulink model. Hyperlinks within
the displayed report let you view the blocks or subsystems that generated the
report. Click the hyperlinks to view the relevant blocks or subsystems in
your Simulink model.

Launch report automatically
Automatically opens a MATLAB Web browser window and displays
the code generation report. When you clear this option, you can
open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser manually.

Build Process

Template makefile
Real-Time Workshop uses template makefiles to generate the makefile for
building the executable file. During the automatic build process, MATLAB
issues the make_rtw command. make_rtw extracts information from the
template makefile ccslink_grt.tmf and creates the actual makefile
c6000.mk. When Real-Time Workshop compiles the model, it uses the actual
makefile to generate the compiled code for the target.

2-49

2 Targeting C6000 DSP Hardware

Set the Template makefile option to ccslink_grt.tmf when you build your
application for the C6000 target. If the template makefile shown in the option
is not ccslink_grt.tmf, click Browse to open the list of available system
target files and select the correct file from the list. Real-Time Workshop then
selects the appropriate template makefile.

Make command
When you generate code from your digital signal processing application, use
the standard command make_rtw as the Make command. In the Build
process area in the Target configuration category, enter make_rtw for the
Make command. Parameters you set in this dialog box belong to the model
you are building. They are saved with the model and stored in the model file.

Custom Storage Class
When you generate code from a model employing custom storage classes
(CSC), make sure to clear Ignore custom storage classes. This setting
is the default value for Target for TI C6000 and for Real-Time Workshop
Embedded Coder.

When you select Ignore custom storage classes,

• Objects with CSCs are treated as if you set their storage class attribute
to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

Generate code only
The Generate code only option does not apply to targeting with Target for
TI C6000. To generate source code without building and executing the code on
your target, select TI C6000 runtime from the Category list in the Select
tree. Then, under Runtime, select Generate code only for Build action.

2-50

Setting Real-Time Workshop Pane Options

You cannot use DSP/BIOS features when you use the Generate code only
option for the Build action.

Debug Pane Options
Real-Time Workshop uses the Target Language Compiler (TLC) to generate
C code from the model.rtw file. The TLC debugger helps you identify
programming errors in your TLC code. Using the debugger, you can

• View the TLC call stack.

• Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

2-51

2 Targeting C6000 DSP Hardware

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific
to Real-Time Workshop process and TLC debugging.

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop Target Language Compiler
documentation.

2-52

Setting Real-Time Workshop Pane Options

Optimization Pane Options
On the Optimization pane in the Configuration Parameters dialog box, you
set options for the code that Real-Time Workshop generates during the build
process. You use these options to tailor the generated code to your needs.
Select Optimization from the Select tree on the Configuration Parameters
dialog box. The figure shows the Optimization pane when you select the
system target file ccslink_grt.tlc under Real-Time Workshop system
target file.

These are the options typically selected for Real-Time Workshop:

2-53

2 Targeting C6000 DSP Hardware

• Conditional input branch execution

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous temporary variables (Expression folding)

• Loop unrolling threshold

• Optimize initialization code for model reference

For more information about using these and the other Optimization options,
refer to your Real-Time Workshop documentation.

Link for CCS Pane Options
On the select tree, the TIC6000 Code Generation entry provides options in
these areas:

• Target Selection — Export a handle to your MATLAB workspace

• Code Generation — Configure your code generation requirements, such
as enabling DSP/BIOS

• Project Options — Set build options for your project code generation

• Runtime — Set options for run-time operations, like the build action

• Processor in the loop (PIL) verification — Enable processor in the loop
capability for your project

Target Selection
When you use Real-Time Workshop to build a model to a C6000 target, Target
for TI C6000 makes a connection between MATLAB and CCS. If you have
used Link for Code Composer Studio Development Tools, you are familiar
with function ccsdsp, which creates objects the reference between the IDE
and MATLAB. This option refers to the same object, called cc in the function
reference pages. Although MATLAB to CCS is a bridge to a specific instance
of the CCS IDE, what it really is an object that contains information about the
IDE instance it refers to, such as the target board and processor it accesses.
In this pane, the Export IDE handle to MATLAB base workspace option

2-54

Setting Real-Time Workshop Pane Options

lets you instruct Target for TI C6000 to export the object to your MATLAB
workspace, giving it the name you assign in IDE link handle name.

Code Generation
From this category, you select options that define the way your code is
generated:

• Profile real-time task execution

• Inline run-time library functions

To enable the real-time execution profile capability, select Profile real-time
task execution. With this selected, the build process instruments your code
to provide performance profiling at the task level. When you run your code,
the executed code reports the profiling information in

To allow you to specify whether the functions generated from blocks in your
model are used inline or by pointers, Inline run-time library functions
tells the compiler to inline each Signal Processing blockset and Video and
Imaging blockset function. Inlining functions can make your code run more
efficiently (better optimized) at the expense of using more memory.

2-55

2 Targeting C6000 DSP Hardware

As shown in the following figure, the default setting uses inlining to optimize
your generated code.

When you inline a block function, the compiler replaces each call to a block
function with the equivalent function code from the static run-time library.
If your model use the same block four times, your generated code contains
four copies of the function.

While this redundancy uses more memory, inline functions run more quickly
than calls to the functions outside the generated code.

2-56

Setting Real-Time Workshop Pane Options

Project Options

Compiler options string
To let you determine the degree of optimization provided by the TI optimizing
compiler, you enter the optimization level to apply to files in your project.
For details about the compiler options, refer to your CCS documentation.
When you create new projects, Target for TI C6000 sets the optimization to
Function(-o2).

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

Linker options string
To let you specify the options provided by the TI linker during link time, you
enter the linker options as a string. For details about the linker options, refer
to your CCS documentation. When you create new projects, Target for TI
C6000 sets no linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

System stack size (bytes)
Enter the amount of memory to use for the stack. For more information,
refer to Local block outputs on the Optimization pane of the Configuration
Parameters dialog box. The block output buffers are placed on the stack
until the stack memory is fully allocated. After that, the output buffers go
in global memory.

Runtime
Before you run your model as an executable on any C6000 target, you must
configure the run-time options for the model on the board.

By selecting values for the options available, you configure the operation of
your target.

2-57

2 Targeting C6000 DSP Hardware

Build action
To specify to Real-Time Workshop what to do when you click Build, select
one of the following options. The actions are cumulative—each listed action
adds features to the previous action on the list and includes all the previous
features:

• Create_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. This option
offers a convenient way to build projects in CCS. The build process
for a model also generates the files modelname.c, modelname.cmd,
modelname.bld, and many others. It puts the files in a build directory
named modelname_c6000_rtw in your MATLAB working directory. This
file set contains many of the same files that Real-Time Workshop generates
to populate a CCS project when you choose Create_Project for the build
action.

• Archive_library — Directs Real-Time Workshop to archive the project
for this model. Use this option when you plan to use the model in a model
reference application. Model reference requires that you archive your CCS
projects for models that you use in model referencing.

• Build — Builds the executable COFF file, but does not download the file
to the target.

• Build_and_execute — Directs Real-Time Workshop to build, download,
and run your generated code as an executable on your target.

• Create_Processor_in_the_Loop_Project — Link for Code Composer
Studio Development Tools provides features that you use to
accomplish processor-in-the-loop (PIL) development and verification.
For more information about PIL, refer to Verification and Using
Processor-in-the-Loop. When you select this, you can right-click a
subsystem in your model and create a PIL block and executable from the
subsystem.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop when to stop
the code generation and build process.

To run your model on the target, select Build_and_execute. This selection is
the default build action; Real-Time Workshop automatically downloads and
runs the model on your target board.

2-58

Setting Real-Time Workshop Pane Options

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

Interrupt overrun notification method
To enable the overrun indicator, choose one of three ways for the target
processor to respond to an overrun condition in your model:

• None — Ignore overruns encountered while running the model.

• Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling
the custom function you identify in Interrupt overrun notification
function.

Interrupt overrun notification function
When you select Call_custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor should use to notify you that an overrun condition
occurred. The function must exist in your code on the processor.

Overrun Indicator and Software-Based Timer
Target for TI C6000 includes software that generates interrupts in models
that do not have ADC or DAC blocks, or that use multiple clock rates. In the
following cases, the overrun indicator does not work:

• In multirate systems where the rate in the model is not the same as the
base clock rate for your model. In such cases, the timer in Target for TI
C6000 provides the interrupts for setting the model rate.

• In models that do not include ADC or DAC blocks. In such cases, the timer
provides the software interrupts that drive model processing.

2-59

2 Targeting C6000 DSP Hardware

Target for TI C6000 Default Project Configuration —
custom_MW
Although CCS offers two standard project configurations, Release and Debug,
models you build with Target for TI C6000 use a custom configuration that
provides a third combination of build and optimization settings—custom_MW.

Project configurations define sets of project build options. When you specify
the build options at the project level, the options apply to all files in your
project. For more information about the build options, refer to your TI CCS
documentation.

The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options discussed in the next
section. custom_MW uses different compiler optimization levels to preserve
important features of the generated code.

Default Compiler Build Options in custom_MW
When you create a new project or build a model to your TI C6000 hardware,
your project and model inherit the build configuration settings from the
configuration custom_MW. The settings in custom_MW differ from the settings
in the default Release configuration in CCS in the compiler settings.

For the compiler options, custom_MW uses the Function(-o2) compiler setting.
The CCS default Release configuration uses File(-o3), a slightly more
aggressive optimization model.

For memory configuration, where Release uses the default memory model
that specifies near functions and data, custom_MW specifies near functions
and data—the -ml1 memory model—because some custom hardware might
not support far data or aggregate data. Your CCS documentation provides
complete details on the compiler build options.

You can change the individual settings or the build configuration within CCS.
Build configuration options that do not appear on these panes default to
match the settings for the Release build configuration in CCS.

2-60

Model Reference and Target for TI C6000

Model Reference and Target for TI C6000

In this section...

“Overview” on page 2-61

“How Model Reference Works” on page 2-61

“Using Model Reference with Target for TI C6000” on page 2-62

“Configuring Targets to Use Model Reference” on page 2-64

Overview
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such as
models the top model refers to. All models or blocks below the top model in
the hierarchy are reference models.

2-61

2 Targeting C6000 DSP Hardware

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop detects that your
model contains referenced models. Simulink generates code for the referenced
models and uses the generated code to build shared library files for updating
the model diagram and simulation. It also creates an executable (a MEX file,
.mex) for each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these setting through
the Model Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation
Real-Time Workshop requires executables to generate code from models. If
you have not simulated your model at least once, Real-Time Workshop creates
a .mex file for simulation.

Now, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop calls make_rtw
on the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference with Target for TI C6000
With few limitations or restrictions, Target for TI C6000 provides full support
for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI
targets is that you must set the Build action (go to Configuration

2-62

Model Reference and Target for TI C6000

Parameters > TIC6000 Code Generation) for all models referred to in
the simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose TIC6000 Code Generation.

4 In the right pane, under Runtime, set Build action to Archive_library.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Overrun action, Overrun notification method, Exporting CCS
object to the workspace, and Stack size are all disabled for the
referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct target. You must configure all the Target Preferences
blocks for the same target.

To obtain information about which compiler to use and which archiver to use to
build the referenced models, the referenced models require Target Preferences
blocks. Without them, the compile and archive processes does not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the

2-63

2 Targeting C6000 DSP Hardware

necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Target for TI C6000 does not allow you to use certain
blocks or S-functions in reference models:

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Target for TI
C6000 library

Configuring Targets to Use Model Reference
Targets that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation target.

• The External mode option is not supported in model reference Real-Time
Workshop target builds and Target for TI C6000 does not support External
mode. If you select this option, it is ignored during code generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in Supporting Shared Utility
Directories in the Build Process.

To use an existing target, or a new target, with Model Reference, you set the
ModelReferenceCompliant flag for the target. For information on how to set
this option, refer to ModelReferenceCompliant in the online Help system.

2-64

Model Reference and Target for TI C6000

If you start with a model that was created prior to version 2.4 (R14SP3),
to make your model compatible with the model reference target, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

Models that you target with Target for TI C6000 versions 2.4 and later
automatically include the model reference capability. You do not need to set
the flag.

2-65

2 Targeting C6000 DSP Hardware

Targeting Supported Boards

In this section...

“Overview” on page 2-66

“Typical Targeting Process” on page 2-67

“Targeting the C6713 DSP Starter Kit” on page 2-67

“Configuring Your C6713DSK” on page 2-69

“Confirming Your C6713DSK Installation” on page 2-70

Overview
Texas Instruments markets a complete set of tools for you to use with
the a range of development boards, such as the C6713 DSK. These tools
are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications. This section provides a brief example of
how to use TI development tools with Real-Time Workshop and the C6713
DSK blocks.

Executing code generated from Real-Time Workshop on a particular target
in real time requires target-specific code. Target-specific code includes I/O
device drivers and an interrupt service routine. Other components, such as
a communication link with Simulink, are required if you need the ability to
download parameters on the fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, Target for TI C6000 provides a target
makefile specific to the evaluation module. This target makefile invokes the
optimizing compiler, provided as part of TI Code Composer Studio.

Used in combination with Real-Time Workshop, TI products provide an
integrated development environment that, once installed, needs no additional
coding.

2-66

Targeting Supported Boards

Typical Targeting Process
Generally, targeting hardware, or a development environment as some call it,
requires that you complete a series of processes that starts with building your
model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks,
and configure the block parameters.

3 Add a target preferences block to your model. Select the block that best
matches your target—one of the device specific blocks, like C6713 DSK, or
the Custom C6000 block when none of the specific blocks is appropriate. All
models that you target to a C6000-processor-based hardware must have
a target preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate sections to the memory segments, and
configure other target-specific options.

5 Set the configuration parameters for your model. Notice that you do this
step after you add the target preferences block to your model.

6 Build your model to your target.

Targeting the C6713 DSP Starter Kit
After you install the C6713 DSK development board and supporting TI
products on your PC, start MATLAB. At the MATLAB command prompt,
enter c6713dsklib. This opens a Simulink block library, c6713dsklib,
that includes a set of blocks for C6713 DSK I/O devices, as described in the
following table.

Block Description

C6713 DSK ADC Configure the analog to digital converter

C6713 DSK DAC Configure the digital to analog converter

C6713 DSK LED Control the user status LEDs on the C6713 DSK

C6713 DSK Reset Reset the processor on the C6713 DSK

2-67

2 Targeting C6000 DSP Hardware

These blocks are associated with your C6713 DSK board. As needed, add the
blocks to your model.

With your model open, select Simulation > Configuration Parameters.
From this dialog box, select Real-Time Workshop from the Select tree. You
must specify the appropriate versions of the system target file and template
makefile. For the C6713 DSK, in the Real-Time Workshop pane, specify

• Real-Time Workshop system target file —ccslink_grt.tlc

• Template makefile —ti_c6ooo.tmf

With this configuration, you can generate a real-time executable and
download it to the TI C6713 evaluation board. You generate the executable by
clicking Build on the Real-Time Workshop pane. The Real-Time Workshop
automatically generates C code and inserts the I/O device drivers as specified
in your block diagram. These device drivers are inserted in the generated C
code as inlined S-functions. Inlined S-functions offer speed advantages and
simplify the generated code. For more information about inlining S-functions,
refer to Target Language Compiler Reference documentation. For a complete
discussion of S-functions, refer to your Writing S-Functions documentation.

During the same build operation, the template makefile and block parameter
dialog box entries are combined to form the target makefile for your TI
evaluation module. This makefile invokes the TI compiler to build an
executable file. If you select the Build_and_execute option, Real-Time
Workshop automatically downloads the executable to the TI evaluation
board via the peripheral component interface (PCI) bus. After downloading
the executable file to the C6713 DSK, the build process runs the file on the
processor.

Starting and Stopping DSP Applications on the C6713 DSK
When you generate code, build the project, and download the code for your
Simulink model to your C6713 DSK, you are running actual machine
code corresponding to the block diagram you built in Simulink. To start
running your DSP application on the evaluation module, you must open your
Simulink model and rebuild the machine executable by clicking Build on the
Real-Time Workshop pane. To start the application on the C6713 DSK, you
use Real-Time Workshop to rebuild the executable from the Simulink model
and download the code to the board.

2-68

Targeting Supported Boards

Your model runs until it encounters one of the following actions:

• You select Debug > Halt in CCS.

• You shut down the host PC.

• The process encounters a Stop block in the model code.

• The running application encounters an error condition that stops the
process.

If you included a Reset C6713 DSK block in your model, clicking the block
stops the running application and restores the digital signal processor to
its initial state.

Note When you build and execute a model on the C6713 DSK, the Real-Time
Workshop build process resets the evaluation module automatically. You do
not need to reset the board before building models. To stop processes that are
running on the evaluation module, or to return the board to a known state
for any reason, use the Reset C6713 DSK block.

Configuring Your C6713DSK
When you install the C6713DSK, set the dual inline pin (DIP) switches as
shown in the following table. If you have installed the board with different
settings, reconfigure the board. Refer to your TMS320C6201/6713Evaluation
Module User’s Guide for details.

DIP Switch Name Setting Effect

SW2-1 BOOTMODE4 On Boot mode setting

SW2-2 BOOTMODE3 On Boot mode setting

SW2-3 BOOTMODE2 Off Sets memory map = 1
when SW2-5 is off

SW2-4 BOOTMODE1 On Boot mode setting

SW2-5 BOOTMODE0 Off Sets memory map =1
when SW2-3 is off

SW2-6 CLKMODE On Sets multiply-by-4 mode

2-69

2 Targeting C6000 DSP Hardware

DIP Switch Name Setting Effect

SW2-7 CLKSEL On Selects oscillator A

SW2-8 ENDIAN On Selects little endian mode

SW2-9 JTAGSEL Off Selects internal Test Bus
Controller (TBC)

SW2-10 USER2 On User-defined option

SW2-11 USER1 On User-defined option

SW2-12 USER0 On User-defined option

Confirming Your C6713DSK Installation
Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the
test utility and interpreting the results, refer to your TMS320C6201/6713
DSP Starter Kit User’s Guide.

To run the C6713 DSK verification test, complete the following steps after
you install your board:

1 Start CCS.

2 Select Start > Programs > Code Composer Studio > DSK Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of the
confidence test, use the command line options in CCS to run the confidence
test utility. For further information about running the verification
test from a DOS window and using the command line options, refer to
TMS320C6201/6713 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6713 DSK. After you change your board
configuration, rerun the verification utility to check your new settings.

2-70

Simulink Models and Targeting

Simulink Models and Targeting

In this section...

“Creating Your Simulink Model for Targeting” on page 2-71

“Blocks to Avoid in Your Models” on page 2-72

Creating Your Simulink Model for Targeting
You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

• Use blocks from the Signal Processing Blockset

• Use blocks from the fixed-point blocks library TI C62x DSPLIB or TI C64x
DSPLIB

• Use other Simulink discrete-time blocks

• Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

• Use blocks that provide the functions you need from any blockset installed
on your computer

• Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF
file format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

2-71

2 Targeting C6000 DSP Hardware

Blocks to Avoid in Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
All blocks generate code, but they do not work in the generated code as they
do on your desktop.

You avoid using certain blocks, such as the Scope block and some source and
sink blocks, in Simulink models that you use on Target for TI C6000 targets.
These blocks waste time in the generated code waiting to send or receive data
from your MATLAB workspace, slowing your signal processing application
without adding instrumentation value.

The following table describes blocks you should not use in your target models.

Block
Name/Category Library Description

Scope Simulink, Signal
Processing
Blockset

Provides oscilloscope view of
your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.

From Workspace Simulink Send data to your model from
your MATLAB workspace.

Spectrum Scope Signal Processing
Blockset

Compute and display the
short-time FFT of a signal.
It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.

From File Simulink Get data from a file on your host
machine.

Triggered to
Workspace

Signal Processing
Blockset

Send data to your MATLAB
workspace.

2-72

Simulink Models and Targeting

Block
Name/Category Library Description

Signal To
Workspace

Signal Processing
Blockset

Send a signal to your MATLAB
workspace.

Signal From
Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

To Wave device Signal Processing
Blockset

Send data to a .wav device.

From Wave device Signal Processing
Blockset

Get data from a .wav device.

To Wave file Signal Processing
Blockset

Send data to a .wav file.

From Wave file Signal Processing
Blockset

Get data from a .wav file.

In general, using blocks to add instrumentation to your application is
a valuable tool. In most cases, blocks you add to your model to display results
or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

When you need to send data to or receive data from your target, use the To
Rtdx and From Rtdx blocks to accomplish the data transfer.

2-73

2 Targeting C6000 DSP Hardware

Targeting Tutorial II — A More Complex Application

In this section...

“Overview” on page 2-74

“Working and Build Directories” on page 2-75

“Setting Simulation Program Parameters” on page 2-76

“Selecting the Target Configuration” on page 2-77

“Building and Running the Program” on page 2-83

“Contents of the Build Directory” on page 2-84

Overview
For this tutorial, we demonstrate an application that uses multiple
stages—using wavelets to remove noise from a noisy signal. The model
name is c6713dskwdnoisf. As with any model file, you can run this
denoising demonstration by typing c6713dskwdnoisf at the MATLAB
prompt. The model also appears in the MATLAB demos collection in the Help
browser—under Simulink demos, in Target for TI C6000 category. Here is a
picture of the model as it appears in the demonstration library.

2-74

Targeting Tutorial II — A More Complex Application

Unlike the audio reverberation demo, this model is difficult to build from
blocks in Simulink. It uses complex subsystems for the Delay Alignment block
and the Soft Threshold block. For this tutorial you work with a copy of the
demonstration model, rather than creating the model.

This tutorial takes you through generating C code and building an executable
program from the demonstration model. The resulting program runs on your
C6713 DSK as an executable COFF file.

Working and Build Directories
It is convenient to work with a local copy of the c6713dskwdnoisf model,
stored in its own directory, which you named (something like c6713dnoisfex).
This discussion assumes that the c6713dnoisfex directory resides on drive
d:. Use a different drive letter if necessary for your machine. Set up your
working directory as follows:

1 Create the new model directory from the MATLAB command line by typing

!mkdir d:\c6713dnoisfex (on PC)

2 Make c6713dnoisfex your working directory in MATLAB.

cd d:/c6713dnoisfex

3 Open the c6713dskwdnoisf model.

c6713dskwdnoisf

The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the c6713dskwdnoisf
model as d:/c6713dnoisfex/dnoisfrtw.mdl.

During code generation, Real-Time Workshop creates a build directory within
your working directory. The build directory name is model_target_rtw,
derived from the name of your source model and your chosen target. In the
build directory, Real-Time Workshop stores generated source code and other
files created during the build process. You examine the contents of the build
directory at the end of this tutorial.

2-75

2 Targeting C6000 DSP Hardware

Setting Simulation Program Parameters
To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Real-Time Workshop uses
a fixed-step solver. To set the parameters, use the Configuration Parameters
dialog box as follows:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Solver and enter the following parameter values on the Solver pane.
Note that Target for TI C6000 does not honor a stop time if you set one here.

Start Time: 0.0

Stop Time: inf

Solver options: set Type to Fixed-step. Select the discrete solver
algorithm.

Fixed step size: auto

Tasking mode for periodic sample times: Auto

3 Click Apply, and then click OK to close the dialog box.

4 Save the model. Configuration parameters persist with the model (as the
model configuration set), for you to use in future sessions.

In the next figure you see the Solver pane with the correct parameter settings.

2-76

Targeting Tutorial II — A More Complex Application

Selecting the Target Configuration
To specify the desired target configuration, you choose the

• System target file

• Template makefile

• make command

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run ccslink_grt.tlc target configuration.

Note The Real-Time Workshop category has several subcategories that
you select using the Select tree in the Configuration Parameters dialog
box. During this tutorial you change or review options in just a few of the
categories in the tree.

2-77

2 Targeting C6000 DSP Hardware

To target your C6713 DSK:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Real-Time Workshop on the Select tree. The Real-Time Workshop
pane activates.

3 Click Browse next to the System target file field. This opens the
System Target File Browser. The browser displays a list of available
target configurations. When you select a target configuration, Real-Time
Workshop automatically chooses the appropriate system target file,
template makefile, and make command.

2-78

Targeting Tutorial II — A More Complex Application

4 From the list of available configurations, select ccslink_grt.tlc, and
click OK.

The Real-Time Workshop pane now displays the correct Real-Time
Workshop system target file (ccslink_grt.tlc), Template makefile
(ccslink_grt.tmf), and Make command (make_rtw).

5 To decide whether to export a CCS handle to your MATLAB work space
when you generate code, or run your model, select Link for CCS from
the Select tree.

2-79

2 Targeting C6000 DSP Hardware

6 To export the handle (a variable) that CCS creates when you generate code
from your model, select Export IDE link handle to base workspace,
and enter a name for the handle in IDE link handle name.

7 Select the Inline run-time library functions and the Incorporate
DSP/BIOS options, as shown in the previous figure.

8 Select Optimization from the Select tree. A new set of options appears.
The options displayed here are common to all target configurations. Make
sure that all options are set to their defaults, as shown in the following
figure.

2-80

Targeting Tutorial II — A More Complex Application

9 Check to make sure that the Project options are set as shown in the
following figure.

2-81

2 Targeting C6000 DSP Hardware

10 Set the Runtime as shown in the following figure.

2-82

Targeting Tutorial II — A More Complex Application

11 Click OK to close the Configuration Parameters dialog box. Save the model
to retain your new build settings.

Building and Running the Program
The Real-Time Workshop build process generates C code from your model,
and then compiles and links the generated program.

To build and run your program:

1 Access the Configuration Parameters dialog box for your model.

2 Click Build in the Real-Time Workshop pane to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB Command Window. The initial messages are

Starting Real-Time Workshop build procedure for model:

2-83

2 Targeting C6000 DSP Hardware

dnoisfrtw

Generating code into build directory: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

Successful completion of Real-Time Workshop build procedure

for model: dnoisfrtw

4 The working directory now contains an executable, dnoisfrtw.exe.
In addition, Real-Time Workshop created a build directory,
dnoisfrtw_c6000_rtw.

To review the contents of the working directory after the build, type the dir
command from the MATLAB Command Window.

dir
. dnoisfrtw.exe dnoisfrtw_c6000_rtw
.. dnoisfrtw.mdl

5 To run the executable from the MATLAB Command Window, type

!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.

starting the model

6 To see the contents of the build directory, type

dir dnoisfrtw_c6713_rtw

Contents of the Build Directory
The build process creates a build directory and names it model_target_rtw,
concatenating the name of your source model and your chosen target. In this
example, your build directory is named dnoisfrtw_c6713_rtw.

dnoisfrtw_c6713_rtw contains these generated source code files:

2-84

Targeting Tutorial II — A More Complex Application

• dnoisfrtw.c — The stand-alone C code that implements the model.

• dnoisfrtw.h — An include header file containing information about the
state variables

• dnoisfrtw_export.h — An include header file containing information
about exported signals and parameters

The build directory also contains other files used in the build process, such as
the object (.obj) files and the generated makefile (dnoisfrtw.mk).

2-85

2 Targeting C6000 DSP Hardware

Targeting Your C6713 DSK and Other Hardware

In this section...

“Overview” on page 2-86

“Configuring Your C6713 DSK” on page 2-87

“Confirming Your C6713 DSK Installation” on page 2-87

“Running Models on Your C6713 DSK” on page 2-88

Overview
Target for TI C6000 for Texas Instruments DSP lets you use Real-Time
Workshop to generate, target, and execute Simulink models on the Texas
Instruments (TI) C6713 DSP Starter Kit (C6713 DSK). In combination with
the C6713 DSK, your Target for TI C6000 software is the ideal resource for
rapidly prototyping and developing embedded systems applications for the
TI C6713 Digital Signal Processor. Target for TI C6000 software focuses on
developing real-time digital signal processing (DSP) applications for the
C6713 DSK.

This chapter describes how to use Target for TI C6000 to create and execute
applications on the C6713 DSK. To use the targeting software, you should be
familiar with using Simulink to create models and with the basic concepts
of Real-Time Workshop automatic code generation. To read more about
Real-Time Workshop, refer to your Real-Time Workshop documentation.

In this chapter, you will find sections that detail how to use Target for
TI C6000 to build and download DSP applications in Simulink to your
C6713 DSK and to Texas Instruments Code Composer Studio (CCS):

• Configuring your Target for TI C6000 software, in “Setting Real-Time
Workshop Options for C6000 Hardware” on page 2-44

• Configuring your Texas Instruments TMS320C6713 DSP Starter Kit, in
“Configuring Your C6713 DSK” on page 2-87

• Testing your hardware and software installation to be sure everything
works, in “Confirming Your C6713 DSK Installation” on page 2-87 and

2-86

Targeting Your C6713 DSK and Other Hardware

Configuring Your C6713 DSK
After you install and configure your C6713 DSK according to the instructions
in the online help for CCS, you do not need to configure further your
C6713 DSK.

Confirming Your C6713 DSK Installation
Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test
utility and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6713 DSK confidence test, complete the following steps after
you install and configure your board.

1 Open a DOS command window.

2 Access the directory \..\ti\c6000\dsk6x11\conftest

CCS creates this directory when you install your CCS software. It contains
the files to run the C6713 confidence test.

3 Start the confidence test by typing dsk6xtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where
it stores the test results. To specify the name and location of a log file
to contain the results of the confidence test, use the CCS command line
options to run the confidence utility. For further information about running
the confidence test from a DOS window and using the command line
options, refer to the "DSK Confidence Test" topic in the online help for CCS.

4 Review the test results to verify that everything works.

If your confidence test fails, reconfigure your C6713 DSK. After you change
your board configuration, rerun the confidence utility to check your new
settings.

2-87

2 Targeting C6000 DSP Hardware

Running Models on Your C6713 DSK
Texas Instruments markets a complete set of tools for use with the
C6713 DSK. These tools are primarily intended for rapid prototyping of
control systems and hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Real-Time Workshop, Target for TI C6000, and the C6713 DSK Board
Support block library.

Executing code generated from Real-Time Workshop on a particular target in
real-time requires target-specific code. Target-specific code includes I/O device
drivers and an interrupt service routine.

Other components, such as a communication link with Simulink, are required
if you need the ability to download parameters on-the-fly to your target
hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, Target for TI C6000 provides a target
makefile specific to C6000 hardware targets. This target makefile invokes the
optimizing compiler provided as part of CCS.

Used in combination with Target for TI C6000 and Real-Time Workshop, TI
products provide an integrated development environment that, once installed,
needs no additional coding.

After you have installed the C6713 DSK development board and supporting
TI products on your PC, start MATLAB. At the MATLAB command prompt,
type c6713dsklib. This opens a Simulink block library, c6713dsklib, that
includes a set of blocks for C6713 DSK I/O devices:

• C6713 DSK ADC — Configures the analog to digital converter

• C6713 DSK DAC — Configures the digital to analog converter

• C6713 DSK LED — Controls the user-defined light emitting diodes (LED)
on the C6713 DSK

2-88

Targeting Your C6713 DSK and Other Hardware

• C6713 DSK DIP Switch — Sets the dual inline pin switches on the C6713
DSK

• C6713 DSK Reset — Resets the processor on the C6713 DSK

These devices are associated with your C6713 DSK board.

With your model open, select Simulation > Configuration Parameters
from the menu bar to open the Configuration Parameters dialog box.

From this dialog box, click Real-Time Workshop on the select tree. You
must specify the appropriate versions of the system target file and template
makefile. For the C6713 DSK, in the Real-Time Workshop pane of the
dialog box, specify

• System target file — ccslink_grt.tlc

• Template makefile — ccslink_grt.tmf

With this configuration, you can generate and download a real-time executable
to your TI C6713 DSK. Start the Real-Time Workshop build process by
clicking Build on the Real-Time Workshop pane. Real-Time Workshop
automatically generates C code and inserts the I/O device drivers as specified
by the ADC and DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to
your Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the template makefile and block parameter
dialog box entries are combined to form the target makefile for your TI
evaluation module. This makefile invokes the TI compiler to build an
executable file.

If you select the Build_and_execute option, the executable file is
automatically downloaded via the peripheral component interface (PCI) bus
to the TI evaluation board. After downloading the executable file to the C6713
DSK, the build process runs the file on the digital signal processor.

2-89

2 Targeting C6000 DSP Hardware

Starting and Stopping DSP Applications on the C6713 DSK
When you create, build, and download a Simulink model to the C6713 DSK,
you are not running a simulation of your DSP application. You are running the
actual machine code corresponding to the block diagram you built in Simulink.
To start running your DSP application on the evaluation module, you must
open your Simulink model and rebuild the machine executable by clicking
Build on the Real-Time Workshop pane. Each time you want to start the
application on the C6713 DSK, you use Real-Time Workshop to rebuild the
executable from the Simulink model and download the code to the board.

Your model runs until the model encounters one of the following actions:

• Using the Debug > Halt option in CCS

• Using halt from the MATLAB command prompt

• Encountering a Stop block in the model.

• Clicking the C6713 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

2-90

Creating Code Composer Studio Projects Without Building

Creating Code Composer Studio Projects Without Building

In this section...

“Introduction” on page 2-91

“Creating Projects in CCS Without Loading Files to Your Target” on page
2-91

Introduction
Rather than targeting your C6000 board when you build your signal
processing application, you can create Texas Instruments Code Composer
Studio (CCS) projects. Creating projects for CCS lets you use the tools
provided by the CCS software suite to debug your real-time process.

If you build and download your Simulink model to CCS, Target for TI C6000
opens Code Composer Studio, creates a new CCS project named for your
model, and populates the new project with all the files it creates during the
build process—the object code files, the assembly language files, the map files,
and any other necessary files. As a result, you can immediately use CCS to
debug your model using the features provided by CCS.

Creating a project in CCS is the same as targeting C6000 hardware. You
configure your target options, select your build action to create a CCS project,
and then build the project in CCS by clicking Make Project.

Creating Projects in CCS Without Loading Files to
Your Target
From the Select tree in the Configuration Parameters dialog box, select Link
for CCS. Select Create_Project for the Build action, as shown in the next
figure. Note that the Build and Build_and_execute options create CCS
projects as well. The Archive_library option does not create a CCS project.
None of the other options has an effect here. Ignore them when you are
creating a project in CCS rather than generating code.

2-91

2 Targeting C6000 DSP Hardware

After you select Create_CCS_Project, set the options for the Code
Generation options on the Link for CCS category on the Select tree.

Return to the Real-Time Workshop category, clear Generate code only and
click Build to build your new CCS project.

Real-Time Workshop and Target for TI C6000 generate all the files for your
project in CCS and create a new project in the IDE. Your new project is named
for the model you built, with a custom project build configuration custom_MW,
not Release or Debug.

In CCS you see your project with the files in place in the directory tree.

2-92

Targeting Custom Hardware

Targeting Custom Hardware

In this section...

“Overview” on page 2-93

“Typical Targeting Process” on page 2-96

“Targeting a Custom Target” on page 2-98

“Sections Pane” on page 2-106

“To Create Memory Maps for Targets” on page 2-112

Overview
As long as the processor on your custom board is from the TI C6000 DSP
family, you can use Target for TI C6000 to generate code for your target.

Note that the blocks for the peripherals in the C6000 DSP Library, such as the
C6416 DSK ADC or C6713 DSK DAC blocks, are specific to their hardware
and will not work with your custom board. None of the board-specific blocks
provided by this toolbox work with custom hardware. However, the RTDX and
core support blocks should work for standard processors.

Custom hardware targeting currently supports all C6000 processors through
target preferences blocks, either specific to the processor, or a general custom
preferences block. These target preferences blocks are described briefly in
the following table

2-93

2 Targeting C6000 DSP Hardware

Target
Preferences
Block Description

Custom C6000 Provides access to the hardware set up for targeting
any C6000 processor-based board. Note that it does not
set any default values. When you add this block to a
model, you must set all the options on each available
pane—board information, memory mapping, and
section layout.

C6416DSK Sets default values for targeting the C6416 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6455DSK Sets default values for targeting the C6455 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6713 DSK Sets default values for targeting the C6713 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6713DSK Sets default values for targeting the C6713 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6727DSK Sets default values for targeting the C6727 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

DM642EVM Sets default values for targeting the DM642 EVM.
After you add this block to your model, you can modify
the default values as you require. Parameters in this
block are set to match the board attributes.

These target preferences blocks provide a direct way for you to target boards
that are not specifically supported. Due to certain features related to memory

2-94

Targeting Custom Hardware

maps and other processor-specific attributes, custom hardware targeting only
works with the C6000 DSPs.

Several guidelines affect your targeting configuration decisions when you
decide to use custom targets and the custom target preferences block:

1 Specify the memory allocation (memory mapping) using the Memory
and Sections panes on the C6000 Target Preferences dialog box. Set the
memory mapping for your target that best matches your hardware. For
example, if your custom target uses the C6713 processor, be sure your
memory configuration is the same as the one on the supported C6713 DSK,
such as has the same memory size, the same EMF settings, the same
memory sections, and the same cache organization.

2 To use on-chip memory only for your target, choose the Near_Calls setting
for the Memory model in the TI C6000 compiler options. To use external
memory that is specific to your board, choose the Far_Calls setting for the
Memory model. The other selection in the Memory model list offers a
combination of near and far allocation for data and aggregate data.

3 Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the appropriate EVM
or DSK in all important respects. Generally, the ADC, DAC, and other
target-specific blocks are design specifically for their designated targets and
can cause problems when you use them on hardware that is not identical.

4 Set the Overrun notification method in the TI C6000 runtime category
to Print_message when you use the overrun notification feature. If you
choose to use the LED notification option, verify that on your specialized
target you access the LEDs in exactly the same way, and the LEDs respond
in the same way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, add and configure the
Custom C6000 target preferences block, and then open the Configuration
Parameters dialog box for the model.

2-95

2 Targeting C6000 DSP Hardware

Typical Targeting Process
Generally, targeting hardware, or a development environment as it is called
by some, requires that you complete a series of processes that starts with
building your model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

3 Add a target preferences block to your model. Select the block that best
matches your target: one of the device-specific blocks, like C6713DSK or
the Custom C6000 block when none of the specific blocks is appropriate.
All models that you target to C6000-processor-based must have a target
preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate code and data sections to the memory
segments, and set other target-specific options.

5 Set the Simulink configuration parameters for your model. Notice that you
do this after you add the target preferences block to your model.

6 Build your model to your target.

Memory Maps
Memory maps are an essential part of targeting any processor or board.
Without the map, the code generation process cannot determine where various
features of the generated code, such as variables, data, and executable code,
reside on the target.

To discuss memory maps and configuring memory, a few terms need to be
defined:

• Memory map — Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

2-96

Targeting Custom Hardware

• memory segment — Memory partition that corresponds to a physical range
of memory on the target. The segment is named in some fashion, such as
IPRAM or SDRAM.

• Memory section — The smallest unit of an object file. This is a block of data
or code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

- Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

- Initialized sections contain code and data. The .text (containing
executable code) and .data (containing initialized data) sections are
initialized.

• Memory management — Process of specifying the memory segments that
the various memory sections use for your application. A logical memory
map of the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization
and memory management, refer to the online help for CCS, using keywords
like memory map, memory segment, and section.

Note that the compiler does not interact with the memory map. It makes
no assumptions about memory allocation and is not aware of the memory
map. As far as the C6000 compiler is concerned, the physical memory on
your target is one continuous linear block of memory that is subdivided into
smaller blocks containing code, data, or both.

When you configure the block parameters for the Custom C6000 target
preferences block, you are setting up the memory map for your target. You
specify the memory segments that are defined and the contents of each
segment. You specify the sections, both named and default, and the segments
to which the sections are assigned.

These memory management functions are identical to the ones available in
the Configuration Tool in CCS.

2-97

2 Targeting C6000 DSP Hardware

Targeting a Custom Target
To use a board that has a TI C6000 processor but is not one of the supported
boards, use the Custom C6000 target preferences block by adding it to your
model.

Configuring the block parameters tell Simulink, Target for TI C6000, and
Real-Time Workshop about your target processor and how to generate code
that will run on the target.

1 After you add the Custom C6000 target preferences block to your model,
open the block by selecting Edit > Open Block from the model menu
bar. This step opens the C6000 Target Preferences dialog box, containing
default values for all options. In the next steps you change the options to
specify features of your target processor and board.

2 Click Board Info to access the board information pane shown in the
following figure.

2-98

Targeting Custom Hardware

3 For Board type, enter Custom to tell the system you are targeting a board
that Target for TI C6000 does not explicitly support.

4 Select your target processor from the Processor list. Most of the C6000
family of DSP processors are on the list. If the one you need is not listed,
pick one that closely matches your target.

5 Set the actual CPU clock rate for the CPU on your target in CPU clock
speed (MHz). Report the clock speed of the processor on your target.
When you enter a value, you are not changing the CPU clock rate, you
are reporting the actual rate. If the value you enter does not match the
rate on the target, your model real-time results might be wrong, and code
profiling results will not be correct. You must enter the actual clock rate
the board uses. The rate you enter here does not change the rate on the
board. Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the hardware.

2-99

2 Targeting C6000 DSP Hardware

6 If your target is a simulator rather than a hardware target, select
Simulator.

7 To enable high-speed RTDX, meaning that you are using a high-speed
RTDX emulator or your hardware configuration supports high-speed
RTDX, select Enable High Speed RTDX.

8 To enable Target for TI C6000 to connect to CCS, select your target from
the CCS board name list. On this list you see the names of the boards
you have configured in the CCS Setup Utility. If your target board does
not appear on the list, start CCS Setup and add your board to the System
Configuration dialog box.

9 Select the processor to target from the CCS processor name list. For the
board you selected in CCS board name, CCS processor name lists all
the processors on the board. The list comes from the processors you added
to the board in the CCS Setup Utility.

Now you have completed the process of identifying your target to Target
for TI C6000 and Real-Time Workshop. While this process is necessary, it
represents only one small part of enabling you to generate code to run on
your custom board.

One very important part of targeting custom hardware is to provide the target
memory map configuration to the linker and assembler.

Memory and Sections panes on the C6000 Target Preferences dialog box
provide the controls required to specify how the linker and assembler arrange
the code, data, and variables on your target.

The following figures show the Memory and Sections panes with the default
values for all options.

2-100

Targeting Custom Hardware

Memory Pane

2-101

2 Targeting C6000 DSP Hardware

Sections Pane

The information that follows describes the options on the panes in detail.

The Memory pane contains memory options in three areas:

• Physical Memory specifies the mapping for processor memory

• Heap specifies whether you use a heap and determines the size in words

• L2 Cache enables the L2 cache (where available) and sets the size in kB

Be aware that these options can affect the options on the Sections pane.
You can make selections here that change how you configure options on the
Sections pane.

Most of the information about memory segments and memory allocation is
available from the online help system for Code Composer Studio.

2-102

Targeting Custom Hardware

Physical Memory Options
This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different.
For example:

• Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

• C6713 DSK boards provide SDRAM memory segment by default

Name
When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment,
select it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length,
and contents for the new segment. New segments start with code and data as
the type of content that can be stored in the segment (refer to the Contents
option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

2-103

2 Targeting C6000 DSP Hardware

Address
Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting
address shown is the default value. You can change the starting value by
entering the new value directly in Address when you select the memory
segment to change.

Length
From the starting address, Length sets the length of the memory allocated
to the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown
is the default value. You can change the value by entering the new value
directly in this option.

Contents
Contents describes the kind of program sections that you can store in the
memory segment in Name. As the processor type for the target preferences
block changes, the kinds of information you store in listed memory segments
can change. Generally, the Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in Name.

• Data — Allow data to be stored in the memory segment in Name.

• Code and Data — Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

2-104

Targeting Custom Hardware

Add
Click Add to add a new memory segment to the target memory map. When
you click Add, a new segment name appears, for example NEWMEM1, in Name
and on the Physical memory list. In Name, change the temporary name
NEWMEM1 by entering the new segment name. Entering the new name, or
clicking Apply updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory map. Select
the segment to remove in the Physical memory list and click Remove to
delete the segment.

Create Heap
If your processor supports using a heap, as does the C6713, for example,
selecting this option enables creating the heap and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then
select Create heap to create a heap in the select segment. After you create
the heap, use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control.
The only way to control the location of the heap in a segment is to make the
segment and the heap the same size. Otherwise, the compiler determines the
location of the heap in the segment.

Heap Size
After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter
the heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format
as well. Processors may support different maximum heap sizes.

2-105

2 Targeting C6000 DSP Hardware

Define Label
Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label
Selecting Define label enables this option. You use Heap Label to provide
the label for the heap. Any combination of characters is accepted for the label
except reserved characters in C/C++ compilers.

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory
and the program share this second-level memory. C620x DSPs do not support
L2 cache memory, and this option is not available when you choose one of
the C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size
After you enable the L2 cache, select the size of the cache from the list.

Sections Pane
Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
online help. Most of the definitions and descriptions in this section come
from CCS.

2-106

Targeting Custom Hardware

In the pane shown in the preceding figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the various kinds of sections in the
Compiler, DSP/BIOS, and Custom lists. All sections do not appear on both
lists. The string appears on the list shown in the table.

2-107

2 Targeting C6000 DSP Hardware

String Section List
Description of the Section
Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the
code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

2-108

Targeting Custom Hardware

String Section List
Description of the Section
Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in the
code containing the heap

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections
During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks are allocated into
memory as required by the configuration of your system. On the Compiler
Sections list you find both initialized (sections that contain data or
executable code) and uninitialized (sections that reserve space in memory)
sections. The initialized sections are

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

• .sysmem

2-109

2 Targeting C6000 DSP Hardware

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief
description of the section. Also, Placement shows you where the section is
currently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry in the
Compiler Sections list.

Placement
Shows you where the selected Compiler Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined
in the physical memory map on the Memory pane. Select one of the listed
memory segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS
Sections list entry.

2-110

Targeting Custom Hardware

Placement
Shows where the selected DSP/BIOS Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS Sections list, DSP/BIOS objects
like STS or LOG, if your project uses them, are placed in the memory segment
you select from the DSP/BIOS Object Placement list. All DSP/BIOS objects
use the same memory segment. You cannot select the locations for individual
objects.

Custom Sections
When your program uses code or data sections that are not included in either
the Compiler Sections or DSP/BIOS Sections lists, you add the new
sections to this list. Initially, the Custom Sections list contains no fixed
entries, just a placeholder for a section for you to define.

Name
You enter the name for your new section here. To add a new section, click
Add. Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning, you do not need to include
the period in your new name. Names are case sensitive. NewSection is not
the same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory segment
to which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom sections.
When you click Add, the block provides a new temporary name in Name.
Enter the new section name to add the section to the Custom Sections list.

2-111

2 Targeting C6000 DSP Hardware

After typing the new name, click Apply to add the new section to the list. Or
click OK to add the section to the list and close the dialog box.

Remove
To remove a section from the Custom Sections list, select the section to
remove and click Remove. The selected section disappears from the list.

To Create Memory Maps for Targets
Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details of the
memory sections and segments, as well as memory allocations and limitations
for each processor, are provided in your documentation for CCS and from TI.

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is
the result of the settings you provide for the options in the Memory and
Sections panes in the C6000 Target Preferences dialog box.

Unfortunately, each processor has different needs, and the differences make it
impossible to provide details about how you set the options for your target.
You determine, from your model and code

• What memory segments you require

• Which sections you need and where

• Whether you need custom memory segments and sections

• Where to begin each memory segment and how much memory to allot to
each segment

• Any other information that you need to set the options on the Memory
and Sections panes?

After you configure the options in the C6000 Target Preferences dialog box,
you are ready to set the Simulink configuration parameters for your model
and generate code.

2-112

Using Target for TI C6000 with Real-Time Workshop Embedded Coder

Using Target for TI C6000 with Real-Time Workshop
Embedded Coder

In this section...

“Introduction” on page 2-113

“To Use the Embedded Coder Target File” on page 2-114

Introduction
To take advantage of Embedded Coder features, you must migrate your
models to a system target file called ccslink_ert.tlc. This target is based
on the embedded real-time target (ERT) used by Embedded Coder. Other Link
for CCS target files are based on the generic real-time target (GRT).

To use Embedded Coder with Target for TI C6000, you must choose the system
target file ccslink_ert.tlc, available in the System Target File Browser.
If you already have a model with code generation options configured for
the target ccslink_grt.tlc, Target for TI C6000 provide a special utility
function switchc6000target to migrate the model instead.

If you simply choose the system target file ccslink_ert.tlc in the System
Target File Browser directly to change the target for the model, all the
TI C6000 code generation options are reset to default values by the switch.
The C6000-specific options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Real-Time Workshop
pane in the Configuration Parameters dialog box. However, when you use the
system target browser to switch your model between the ERT- and GRT-based
TI C6000 system target files, the TI C6000-specific options (the configuration
set) for the model are reset to default values.

To preserve the option values in the configuration set when you migrate your
model to the ERT-based target (or back to the GRT-based target), use the
function switchc6000target.m.

For example, the command

2-113

2 Targeting C6000 DSP Hardware

switchc6000target(bdroot,'ccslink_ert.tlc')

entered at the MATLAB prompt sets your current Simulink model to use
the desired system target file—ccslink_ert.tlc—while preserving the TI
C6000 Real-Time Workshop options.

Conversely,

switchc6000target(bdroot,'ccslink_grt.tlc')

sets your model to use the generic real-time (GRT)-based target.

To Use the Embedded Coder Target File
For setting up a new model to use the ERT-based target .tlc file.

1 From your model menu bar, select Simulation > Configuration
Parameters.

2 Click Real-Time Workshop on the Select tree to access the Real-Time
Workshop options.

3 Click Browse to open the System Target File Browser.

4 On the System Target File Browser, find and select the file
ccslink_ert.tlc.

5 Click OK.

For changing a model that uses the GRT-based target ccslink_grt.tlc to
use the ERT-based target.

1 Open your Simulink model to change.

2 At the MATLAB prompt, enter

switchc6000target(gcs,'ccslink_ert.tlc')

Now the current model uses the ERT-based target and the configuration
set that you developed for the GRT-based target.

2-114

Using Target for TI C6000 with Real-Time Workshop Embedded Coder

When you return to the Configuration Parameters dialog box and check the
Real-Time Workshop system target file entry in the Real-Time Workshop
pane, you see ccslink_ert.tlc. The rest of the configuration options are
unchanged.

2-115

2 Targeting C6000 DSP Hardware

2-116

3

Targeting with DSP/BIOS
Options

Introducing DSP/BIOS (p. 3-2) Introduces DSP/BIOS from Texas
Instruments.

DSP/BIOS and Targeting Your TI
C6000 DSP (p. 3-4)

Discusses the concepts and files used
by Target for TI C6000 in DSP/BIOS
projects.

Code Generation with DSP/BIOS
(p. 3-7)

Profiling Generated Code (p. 3-12) Demonstrates how to set up and use
profiling in your generated code.

Using DSP/BIOS with Your Target
Application (p. 3-27)

Shows you how to add DSP/ BIOS
features to your projects when you
generate code.

3 Targeting with DSP/BIOS Options

Introducing DSP/BIOS
Target for TI C6000 supports DSP/BIOS features as options when you
generate code for your target. In the sections that follow, you can read
more about what DSP/ BIOS is, how Target for TI C6000 incorporates the
DSP/BIOS features into your generated code, and some ways you might
use the real-time operating system (RTOS) features of DSP/BIOS in your
application. Follow these links for more information on specific areas that
interest you, or read on for more details.

• “DSP/BIOS and Targeting Your TI C6000 DSP” on page 3-4

• “Code Generation with DSP/BIOS” on page 3-7

• “Profiling Generated Code” on page 3-12

• “Using DSP/BIOS with Your Target Application” on page 3-27

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

• DSP/BIOS Real-Time Analysis Tools — use these tools and windows within
Code Composer Studio™ to view your program as it executes on the target
in real-time.

• DSP/BIOS Configuration Tool — enables you to add and configure any and
all DSP/BIOS objects that you use to instrument your application. Use this
tool to configure interrupt schedules and handlers, set thread priorities,
and configure the memory layout on your DSP.

• DSP/BIOS Application Program Interface (API) — lets you use C or
assembly language functions to access and configure DSP/BIOS functions
by calling any of over 150 API functions. Target for TI C6000 uses the API
to let you access DSP/BIOS from MATLAB.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently
and optimally. Only functions that you specifically reference become part of
your code base. Others are not included to avoid adding unused code to your
project. In addition, after you add one or more functions from DSP/BIOS, the
configuration tool help you disable feature you do not need later, letting you
optimize your program for speed and size.

3-2

Introducing DSP/BIOS

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS and DSP/BIOS documentation from Texas Instruments.

3-3

3 Targeting with DSP/BIOS Options

DSP/BIOS and Targeting Your TI C6000 DSP

In this section...

“Introduction” on page 3-4

“DSP/BIOS Configuration File” on page 3-5

“Memory Mapping” on page 3-5

“Hardware Interrupt Vector Table” on page 3-6

“Linker Command File” on page 3-6

Introduction
When you use Real-Time Workshop to generate code from the Simulink model
of your digital signal processing application, you can choose to include the
DSP/BIOS features provided by Target for TI C6000 in your generated code.

By electing to include DSP/BIOS in your generated project, Target for TI
C6000 adds a DSP/BIOS configuration file (with the filename modelname.cdb)
to your project, and adds the following files as well:

• modelnamecfg.s62 — contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

• modelnamecfg.h62 — the header file for modelnamecfg.s62.

• modelnamecfg.h — model configuration header file.

• modelnamecfg_c.c — source code for the model.

• modelnamecfg.cmd — the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.lib, or the run-time
support library for your target.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Rather than having you incorporate the DSP/BIOS files manually when you
create your application, as you would if you used CCS alone, or another text
editor, Target for TI C6000 starts from your Simulink model and adds the
DSP/BIOS files automatically. As it adds the files it

3-4

DSP/BIOS and Targeting Your TI C6000 DSP

• Configures the DSP/BIOS configuration file for your model needs

• Sets up the objects you need to analyze your program while it runs on
your target

• Handles memory mapping to optimize your code based on the blocks in
your model

DSP/BIOS Configuration File
DSP/BIOS projects all have a file with the extension .cdb. The file contains
the DSP/BIOS configuration information for your project, in the form of
objects for instrumenting and scheduling tasks in the program code. Included
in any DSP/BIOS project might be

• Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

• Statistics (STS) objects for tracking the performance of your code

• A clock (CLK) object for configuring the clock on your target, and various
memory functions

• Hardware and software interrupt (HWI, SWI) objects that control program
execution

• Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide all the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

Not all of the DSP/BIOS objects get used by the code you generate from Target
for TI C6000. In the next sections, you learn about which objects the targeting
software uses and how. Of course, you can still add more objects to your code
through CCS. Note, however, that if you add additional DSP/BIOS objects
beyond those provided by Target for TI C6000, you lose your additions when
you regenerate your code from your Simulink model.

Memory Mapping
Memory mapping that takes place in the linker command file now appears
in the MEM object in the DSP/BIOS configuration file. Your memory sections,

3-5

3 Targeting with DSP/BIOS Options

such as the DATA_MEM assignments and definitions, move to the MEM object,
as do the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
necessary in the linker command file.

Hardware Interrupt Vector Table
In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you choose to use DSP/BIOS capabilities, the interrupts defined in the
vector table move to the Hardware Interrupt Service Routine Manager in the
CCS Configuration Tool. With all of your interrupts now defined as Hardware
Interrupts (HWI) in the Configuration Tool, your project does not need
vector.asm so the file does not appear in your DSP/BIOS enabled projects.

Linker Command File
After migrating your memory sections and segment, and your hardware
interrupt vector table to the configuration file, building with the DSP/BIOS
option creates a compound linker command file. Since DSP/BIOS allows only
one command file per project, and your linker file may comprise command
options that did not relocate the DSP/BIOS configuration, Target for TI C6000
uses compound command files. Compound command files work to let your
project use more than one command file.

By starting your original linker command file with the statement

"-lmodelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both
your original linker command file and the DSP/BIOS command file. You get
the features provide by DSP/BIOS as well as the custom command directives
you need.

3-6

Code Generation with DSP/BIOS

Code Generation with DSP/BIOS

In this section...

“Overview” on page 3-7

“Generated Code Without and With DSP/BIOS” on page 3-7

Overview
While generating code that includes the DSP/BIOS options is straightforward
using the Incorporate DSP/BIOS option in the TIC6000 code generation
options, changes occur between code that does not include DSP/BIOS and code
that does. Two things change when you generate code with DSP/BIOS—files
are added and removed from the project in CCS, and DSP/BIOS objects
become part of your generated code. With these in place, you can use the
DSP/BIOS features in CCS to debug your project, as well as use the profiling
option in Target for TI C6000 to check the performance of your application
running on your target.

Generated Code Without and With DSP/BIOS
The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

3-7

3 Targeting with DSP/BIOS Options

Example — c6713dskwdnoisf.pjt code Generated Without
DSP/BIOS
When you create your project in CCS, the directory structure looks like this.

3-8

Code Generation with DSP/BIOS

Example — c6713dskwdnoisf.pjt Code Including DSP/BIOS
If you now create a new project that includes DSP/BIOS, the directory
structure for your project changes to look like the following figure.

Added File Description

modelname.cdb Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

3-9

3 Targeting with DSP/BIOS Options

Added File Description

modelnamecfg.s62 Shows all the included files in your project, the
variables, the DSP/BIOS objects, and more in this
file generated from the .cdb file

modelnamecfg.h62 The header file for modelnamecfg.s62

modelnamecfg.h Model configuration header file

modelnamecfg_c.c Source code for the model

modelnamecfg.cmd The linker command file for the project. Adds
the required DSP/BIOS libraries and the library
RTS6201.lib or the run-time support library for your
target.

Notice that the new directory includes some new files, shown in the next table.

With DSP/BIOS functions enabled for your project, the following files no
longer appear in your project.

Filename Description

vectors.asm Defines the hardware interrupts (HWI) used
by interrupt service routines on the processor.
This file is removed after all of the hardware
interrupts appear in the HWI section of the
Configuration Tool.

Original linker
command
file—modelname.cmd

Assigns memory sections on the processor. This
file is removed if the SECTION directive is empty
because all of the section assignments moved to
the configuration file. Otherwise, include call to
the DSP/BIOS command file.

Some *.lib files Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

3-10

Code Generation with DSP/BIOS

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or
more new functions.

3-11

3 Targeting with DSP/BIOS Options

Profiling Generated Code

In this section...

“Overview” on page 3-12

“Profiling Subsystems” on page 3-13

“Details About Timing and Profiling” on page 3-14

“Profiling Multitasking Systems” on page 3-15

“The Profiling Report” on page 3-17

“Interrupts and Profiling” on page 3-18

“Reading Your Profile Report” on page 3-19

“Definitions of Report Entries” on page 3-20

“Profiling Your Generated Code” on page 3-22

“To Enable Profiling for Your Generated Code” on page 3-23

“To Create Atomic Subsystems for Profiling” on page 3-24

Overview
When you use Target for TI C6000 to generate code that incorporates the
DSP/BIOS options, you can easily profile your generated code to gauge
performance and find bottlenecks.

By selecting Profile performance at atomic subsystem boundaries in
the Real-Time Workshop options, Real-Time Workshop inserts statistics
(STS) object instrumentation at the beginning and end of the code for each
atomic subsystem in your model. (For more about STS objects, refer to your
DSP/BIOS documentation from Texas Instruments.)

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target back to MATLAB and display
the information in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow
Target for TI C6000 to profile your model when you build it in Real-Time

3-12

Profiling Generated Code

Workshop, you convert segments of your model into atomic subsystems using
Create subsystem.

By designating subsystems of your model as atomic, you force each subsystem
to execute only when all of its inputs are available. Waiting for all the
subsystem inputs to be available before running the subsystem allows the
subsystem code to be profiled as a contiguous segment.

To enable the profile feature for your Simulink model, choose
Tools > Real-Time Workshop > Options from the model menu bar.
Navigate to the TI C6000 code generation category, and select the
Profile performance at atomic subsystem boundaries check box.

Profiling Subsystems
Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in any profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems
in your model might not be included in the profiling process. When your
model is configured to use single-tasking mode, all atomic subsystems in
your model are profiled and appear in the report. When your model uses
multitasking (refer to your Real-Time Workshop documentation for more
about multitasking models) profiling applies only to single-rate subsystems
that execute at the base rate of your model. This limitation arises because all
of the generated code segments must execute contiguously for the profiling
timing measurements to be correct. Setting the Tasking mode for periodic
sample times to Auto in the model configuration parameters does not
guarantee contiguous execution for all code segments and subsystems.

Notice two things in your code:

• STS objects are added to the generated code

• A generated DSP/BIOS configuration gets added to the project configuration
file

Target for TI C6000 inserts and configures these objects specifically for
profiling your code. You do not have to make changes to the STS objects. To

3-13

3 Targeting with DSP/BIOS Options

see the statistics objects in use, download your generated application to your
board, select DSP/BIOS > Statistics View from the menu bar in CCS, and
run the board for a few seconds. You see the statistics being accumulated by
the STS objects.

Details About Timing and Profiling
The profiling system in Target for TI C6000 relies on DSP/BIOS STS objects
and the CLK_gethtime() function. CLK_gethtime() returns a high resolution
timing counter that enables profiling to measure the instruction cycles the
CPU spends executing code segments. To understand profiling, you need to
understand how CLK_gethtime() works.

This is how the system determines the value of CLK_gethtime:

CLK_gethtime() return val = CLK_getltime() *PRD0 + CNT0

PRD0 and CNT0 are timer 0 period and counter registers. In code generation,
BIOS allocates timer 0 as a system timer and set the timer to generate a
timer interrupt every 1ms. CLK_getltime() in turn returns the number of
BIOS system timer interrupts. By this logic, PRD0 is set to the number of
CPU clock cycles divided by the number of low resolution clock cycles that is
equivalent to 1 millisecond in absolute time (8 low resolution clock cycles for
C64x processors, for example).

The key point here is that function CLK_gethtime() relies on the
CLK_getltime() function which in turn relies on a timer 0 interrupt. If
your process globally disables interrupts during code execution for more
than 1 PRD0 instruction cycle, one or more timer interrupts can be missed,
resulting in a situation where both CLK_getltime() and CLK_gethtime()
can be inaccurate.

CLK_getltime() will be inaccurate because it does not report the correct time
value. But it is always positive. The situation is worse for CLK_gethtime()
It may report negative timing around code segments where interrupts are
disabled:

A = CLK_gethtime();
IRQ_globalDisable();
{

Code segment;

3-14

Profiling Generated Code

}
IRQ_globalEnable();
B = CLK_gethtime();

In this situation, if interrupts are disabled longer than 1ms around the code
segment to be profiled, B might be smaller than A since CTN0 might have
rolled over. So the count of the instruction cycles computed as (B - A) might
be negative.

Correcting Inaccurate Profile Information Due to Timing
One way to correct problems in profiling caused by the disabled interrupts is
to set the DSP/BIOS system timer interrupt to occur less frequently. As noted
earlier, the timer is set to 1 millisecond by default.

You can change setting manually after you generate code for your project.
Here are the steps to use to reset the DSP/BIOS system timer interval.

1 Open the .cdb file for the project.

2 Select Scheduling > CLK Clock Manager.

3 Right-click CLK Clock Manager to set the properties for the clock manager.

4 Change the Microseconds/Int value from the default 1000.00
microseconds to something larger, for example, 5000.00 microseconds.

5 Save the project.

This timing change reduces the chances of missing a system timer interrupt.
If you do this and profile the code again, the profiling results are usually
accurate. You can verify that if you reduce the system timer interrupt interval
further, to perhaps 100 microseconds, you get less and less accurate profiling
results, possibly reporting negative timing values.

Profiling Multitasking Systems
For a multitasking system, DSP/BIOS STS objects cannot reliably measure the
time the processor spends in all tasks. When tasks can be preempted by other
tasks (a result of multitasking operation), the profile timing measurements

3-15

3 Targeting with DSP/BIOS Options

may be incorrect. For this reason, Target for TI C6000 includes profiling
instrumentation for atomic systems that run at the base sample rate only.

When you run the same model in single tasking mode, you can get the timing
measurements for all the systems in your model for one iteration:

1 Select Tools > Real-Time-Workshop > Options from the model menu
bar.

2 Under Tasking on the Solver pane, select SingleTasking for Tasking
mode for periodic sample times.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that all tasks complete within the base sample time which usually
does not happen. However, all systems and subsystems do run once before the
program terminates. This allows you to obtain profiling results for all systems.

When the overrun occurs, click Halt in CCS to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') at the MATLAB prompt to report
the statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in
mind that the percentages are given relative to the base sample time, so you
must do some arithmetic to figure out whether a given system will fit in its
available time interval. For instance, if your base sample time is 1 second,
subsystem A executes every 3 seconds, the base-rate task takes 0.1 seconds
to run, and A takes 2.5 seconds to run, the system should execute without
overruns in multitasking mode.

If you change the overrun action option from its default setting of Notify
and halt to Notify and continue or None, you can get measurements for
multiple iterations of the system. Also, you will be able to request the profile
report without first halting the CPU.

3-16

Profiling Generated Code

The Profiling Report
To help you measure subsystem performance, Target for TI C6000 provides
a custom report that analyzes and displays the profile statistics. The report
shows you the amount of time spent computing each subsystem, including
Outputs and Update code segments, and provides links that open the
corresponding subsystem in the Simulink model.

To view the profiling report, enter

profile(cc,'report')

at the MATLAB prompt, where cc is the handle to your target and CCS, and
report is one of the input arguments for profile.

When you generate the report, Target for TI C6000 stores the report in your
code generation working directory, something like modelname.c6000.rtw,
with the name profileReport.html.

If MATLAB cannot find your code generation directory, the profile reports
is stored in your temporary directory, tempdir. To locate your temporary
directory, enter

tempdir

at the MATLAB command prompt.

Caution Each time you run the profiling process, Target for TI C6000
replaces your existing report with a newer version. To save earlier reports,
rename and save the report before you generate a new one, or change your
destination temporary directory in MATLAB.

You must invoke profile after your Real-Time Workshop build, without
clearing MATLAB memory between operations, so that stored information
about the model is still available to the report generator. If you clear your
MATLAB memory, information required for the profile report gets deleted
and the report does not work properly. When this occurs, and if you have
a CCS project that was previously created with Real-Time Workshop, you

3-17

3 Targeting with DSP/BIOS Options

must repeat the Real-Time Workshop build to see the subsystem-based profile
analysis in the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex
and thus not detailed here.) Inspect your generated code, particularly
modelname.c, to determine where and how Simulink and Real-Time Workshop
implemented particular subsystems.

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSys0_Output, CLK_gethtime());

or

STS_delta(&stsSys0_Output, CLK_gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS, STS objects show up in the Statistics Object Manager section
under Instrumentation in the modelname.cdb file. Double-click the file
modelname.cdb in the CCS tree view to open the file and see the sections.

In some cases, Real-Time Workshop may have pruned unused data paths,
causing related performance measurements to become meaningless. Reusable
system code, or code reuse, where a single function is called from multiple
places in the generated code, can exhibit extra measurements in the profile
statistics, while the duplicate subsystem may not show valid measurements.

Interrupts and Profiling
Although there are STS objects that measure the execution time of the
entire mdlOutputs and mdlUpdate functions, those measurements can be
misleading because they do not include other segments of code that execute
at each interrupt. Statistics for the SWI are used when calculating the
headroom (the difference between the number of CPU cycles your process
requires to complete and the number available for the process to complete,
which does not include the small overhead required for each interrupt. Note

3-18

Profiling Generated Code

that profiling of multitasking systems does not measure the headroom. In
addition, multitasking profiling does not use the SWI statistics.

To measure most accurately the overall application CPU usage, consider the
DSP/BIOS IDL statistics, which measure time spent not doing application
work. Your DSP/BIOS documentation from TI provides details about the
various DSP/BIOS objects in the cdb file.

The interrupt rate for a DSP/BIOS application created by Target for TI
C6000 is the fastest block execution rate in the model. The interrupt rate is
usually, but not always, the same as the codec frame rate. When there is
an upsampling operation or other rate increasing operation in your model,
interrupts are triggered by a timer (PRD) object at the faster rate. You can
determine the effective interrupt rate of the model by inverting the interrupt
interval reported by the profiler.

Reading Your Profile Report
After you have the report from your generated code, you need to interpret
the results. This section provides a link to sample report from a model and
explains each entry in the report.

Sample of a Profile Report
When you click Sample Profile Report, the sample report opens in a new Help
browser window. This opens the sample report in a new window so you can
read the report and the descriptions of the report contents at the same time.
Running the model c6713dskwdnoisf with DSP/BIOS generates the sample
profile report. The next sections explain the headings in the report—what
they mean and how they are measured (where that applies).

Report Heading Information
At the beginning of the report, profiling provides the name of the model you
profiled, the target you used, and the date of the report. Since the report
changes each time you run it, the date can be an important means of tracking
model development.

3-19

3 Targeting with DSP/BIOS Options

Report Subsections and Contents
Within the body of your profile report, sections report the overall performance
of your generated code and the performance of each atomic subsystem.

Report Heading Description

Timing Constants Shows you the base sample time in your model
(=1/base rate in Hz) and the CPU clock speed used
for the analysis.

Profiled Simulink
Subsystems

Presents the statistics for each profiled subsystem
separately, by subsystem. Each listing includes
the STS object name or names that instrument
the subsystem.

STS Objects Lists every STS object in the generated code and
the statistics for each. DSP/BIOS uses these
objects to determine the CPU load statistics. For
more information about STS objects, refer to your
DSP/BIOS documentation from TI.

STS objects that are associated with subsystem profiling are configured for
host operation at 4*x, reflecting the numerical relationship between CPU
clock cycles and high-resolution timer clicks, x. STS Average, Max, and Total
measurements return their results in counts of instructions or CPU clock
cycles.

Definitions of Report Entries
In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decipher the report and better understand
how your process is performing.

System name
Provides the name of the profiled model, using the form targetnameprofile.
targetname is the processor or board assigned as the target, via the target
preferences block.

3-20

Profiling Generated Code

Number of Iterations Counted
The number of interrupts that occurred between the start of model execution
and the moment the statistics were obtained.

CPU Clock Speed
The instruction cycle speed of your digital signal processor. On the C6713
DSK, you can adjust this speed to one of four values, where 100 MHz is the
default—25, 33.25, 100, 133 MHz. If you change the speed to something other
than the default setting of 100 MHz, you must specify the new speed in the
Real-Time Workshop options. Use the Current C6713DSK CPU clock rate
option on the TIC6000 runtime category on the Real-Time Workshop tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6713
DSK. You do not need to report the setting in the Real-Time Workshop options.

Maximum Time Spent in This Subsystem per Interrupt
The amount of time spent in the code segment corresponding to the
indicated subsystem in the worst case. Over all the iterations measured,
the maximum time that occurs is reported here. Since the profiler only
supports single-tasking solver mode, no calculation can be preempted by a
new interrupt. All calculations for all subsystems must complete within one
interrupt cycle, even for subsystems that execute less often than the fastest
rate.

Maximum Percent of Base Interval
The worst-case execution time of the indicated subsystem, reported as a
percentage of the time between interrupts.

STS Objects
Profiling uses STS objects to measure the execution time of each atomic
subsystem. STS objects are a feature of the DSP/BIOS run-time analysis
tools, and one STS object can be used to profile exactly one segment of code.
Depending on how Real-Time Workshop generates code for each subsystem,
there may be one or two segments of code for the subsystem; the computation
of outputs and the updating of states can be combined or separate. Each
subsystem is assigned a unique index, i. The name of each STS object helps

3-21

3 Targeting with DSP/BIOS Options

you determine the correspondence between subsystems and STS objects. Each
STS object has a name of the form

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the
next section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate.

Profiling Your Generated Code
Before profiling your generated code, you must configure your model and
Real-Time Workshop to support the profiling features in Target for TI C6000.
Your model must use DSP/BIOS features for profiling to work fully.

The following tasks compose the process of profiling the code you generate.

1 Enable DSP/BIOS for your code.

2 Enable profiling in the Real-Time Workshop.

3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 In MATLAB, use profile to view the profile report.

To demonstrate profiling generated code, this procedure uses the wavelet
denoising model c6713dskwdnoisf.mdl that is included with Target for TI
C6000 demo programs. If you are using the C6713 DSK as your target, use
the model C6713dskwdnoisf throughout this procedure. Simulators work as
well, just choose the appropriate model for your simulator.

Begin by loading the model, entering

c6713dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

3-22

Profiling Generated Code

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in you code to use profiling.

1 To enable the profile feature for your Simulink model, select
Tools > Real-Time Workshop > Options... from the model menu bar.

The Simulation Parameters dialog opens for you to set the code
generation options for your model.

2 Click Real-Time Workshop to display the configuration panes for setting
your code generation options.

3 From the Category list, select TI C6000 Code Generation.

Your display changes to show the options you set to control code generation
for TI C6000 targets, as shown here.

3-23

3 Targeting with DSP/BIOS Options

4 Select the Profile performance at atomic subsystem boundaries
option. Selecting this option enables profiling in your generated code.
However, you still need to configure your model to support the profiling
process.

To Create Atomic Subsystems for Profiling
Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic

3-24

Profiling Generated Code

subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

1 Select the Analysis Filter Bank block. Select Edit > Create subsystem
from the model menu bar. Note that the name of the block changes to
subsystem. Repeat for the Soft Threshold block.

2 To convert your new subsystems to atomic subsystems, right-click on each
subsystem and choose Subsystem parameters... from the context menu.

3 In the Block Parameters: Subsystem dialog for each subsystem, select
the Treat as atomic unit option. Click OK to close the dialog. If you
look closely you can see that the subsystems now have heavier borders to
distinguish them from the other blocks in your model.

To Build and Profile Your Generated Code
You have enabled profiling in your model and configured two atomic
subsystems in the model as well. Now, use the profiling feature in Target for
TI C6000 to see how your code runs and check the performance for bottlenecks
and slowdowns as the code runs on your target.

Caution Do not click on any other open model while you are profiling your
model. Clicking on another open model can cause profiling to fail with an
error message like “Invalid Simulink object specifier.”

1 Select Tools > Real-Time Workshop > Build Model.

If you did not use the Real-Time Workshop options to automate model
compiling, linking, downloading, and executing, perform these tasks using
the Project options in CCS IDE.

Allow the application to run for a few seconds or as long as necessary to
execute the model segments of interest a few times. Then stop the program.

2 Create a link to CCS by entering

3-25

3 Targeting with DSP/BIOS Options

cc = ccsdsp;

at the MATLAB prompt.

3 Enter

profile(cc,'report')

at the prompt to generate the profile report of your code executing on
your target.

The profile report appears in the Help browser. It should look very much
like the sample report provided here; your results may differ based on your
target and the settings in the model.

3-26

Using DSP/BIOS with Your Target Application

Using DSP/BIOS with Your Target Application

Enabling DSP/BIOS When You Generate Code
For any code you generate using Real-Time Workshop and Target for TI C6000,
you have the option of including DSP/BIOS features automatically when you
generate the code. Incorporating the features requires you to select one option
in the Target Preferences block—DSP/BIOS for the operating system.

1 Open the model to use to generate code.

2 Open the Target Preferences block in your model.

3 On the Board Info pane, select DSP/BIOS for Operating system under
the Code Generation options.

3-27

3 Targeting with DSP/BIOS Options

4 As shown in the figure, select DSP/BIOS for Operating system.

3-28

4

Using the C62x and C64x
DSP Libraries

About the C62x and C64x DSP
Libraries (p. 4-2)

Introduces the C62xand C64x DSP
libraries

Fixed-Point Numbers (p. 4-5) Discusses the representation of
fixed-point numbers in the C62xand
C64x DSP libraries

Building Models (p. 4-10) Reviews some issues to consider
when you build models with blocks
from the C62xor C64x DSP libraries

4 Using the C62x and C64x DSP Libraries

About the C62x and C64x DSP Libraries

In this section...

“C62x DSP Library” on page 4-2

“C64x DSP Library” on page 4-3

“Supported Platforms” on page 4-3

“Characteristics Common to C62x and C64x Library Blocks” on page 4-4

C62x DSP Library
Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once
you develop your model, you can invoke Real-Time Workshop to generate
code that is optimized to run on C6713 DSK development platforms or C62x
hardware. (Fixed-point processing on C67x hardware is identical to C62x
fixed point hardware and processing so you can develop on the C67x for the
C62x.) During code generation, each C62x DSP Library block in your model
is mapped to its corresponding TMS320C62x DSP Library assembly-code
routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Blocks — By Category” discusses the data types accepted and
produced by each block in the library. “Fixed-Point Numbers” on page 4-5
gives a brief overview of using fixed-point data types in Simulink. For an
in-depth discussion of fixed-point data types, including issues with scaling and
precision when you perform fixed-point operations, refer to your “Fixed-Point
Toolbox” documentation.

You can use C62x DSP Library blocks with certain blocks from the Signal
Processing Blockset and Simulink. To learn more about creating models that
include both C62x DSP Library blocks and blocks from other blocksets, refer
to “Building Models” on page 4-10.

4-2

About the C62x and C64x DSP Libraries

C64x DSP Library
Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink before generating code. Once
you develop your model, you can invoke Real-Time Workshop to generate
code that is optimized to run on the C6416 DSK development platform or
other C64x hardware. During code generation, each C64x DSP Library block
in your model is mapped to its corresponding TMS320C64x DSP Library
assembly-code routine to create target-optimized code.

C64x DSP Library blocks generally input and output fixed-point data types.
Chapter 5, “Blocks — By Category” discusses the data types accepted and
produced by each block in the library. “Fixed-Point Numbers” on page 4-5
gives a brief overview of using fixed-point data types in Simulink. For an
in-depth discussion of fixed-point data types, including issues with scaling and
precision when you perform fixed-point operations, refer to your Fixed-Point
Toolbox documentation.

You can use C64x DSP Library blocks with certain blocks from the Signal
Processing Blockset and Simulink. To learn more about creating models that
include both C64x DSP Library blocks and blocks from other blocksets, refer
to “Building Models” on page 4-10.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the appropriate C64x block creates
better optimized code. (Target for TI C6000 generates a warning message
when you try to do this but allows you to use the block.)

Supported Platforms
The C62x and C64x DSP libraries can be used with the platforms listed in the
following table:

Library Supported platforms

C62x C62x, C67x, C67x+, C64x, C64x+

C64x C64x, C64x+

4-3

4 Using the C62x and C64x DSP Libraries

Characteristics Common to C62x and C64x Library
Blocks
The following characteristics are common to all C62x and C64x DSP Library
blocks:

• All blocks inherit sample times from driving blocks.

• The blocks are single rate.

• Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

• All blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

To learn more about characteristics particular to each block in the library,
refer to Chapter 5, “Blocks — By Category”

4-4

Fixed-Point Numbers

Fixed-Point Numbers

In this section...

“Notation” on page 4-5

“Signed Fixed-Point Numbers” on page 4-6

“Q Format Notation” on page 4-6

Notation
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below.

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

4-5

4 Using the C62x and C64x DSP Libraries

• The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 is 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the LSB)

results in the negative of 000101 being 111011.

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When performing arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge
of a binary point. They perform signed or unsigned integer arithmetic—as
if the binary point is to the right of the LSB (b0). Therefore, you determine
the binary point in your code.

In the C62x DSP Library, the position of the binary point in signed, fixed-point
data types is expressed in and designated by Q format notation. This
fixed-point notation takes the form

Qm.n

4-6

Fixed-Point Numbers

where

• designates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

• is the number of bits used to designate the two’s complement integer
portion of the number.

• is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes n is called the scale factor.

Q format always designates the most significant bit of a binary number as
the sign bit. Representing a signed fixed-point data type in Q format requires
m+n+1 bits to account for the sign.

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In Fixed-Point Toolbox, this data type is expressed as

sfrac16

or

sfix16_En15

Filter Design Toolbox expresses this data type as the vector

[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

4-7

4 Using the C62x and C64x DSP Libraries

Example — Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data
type with 30 bits to the right of the binary point. One bit is the designated
sign bit, forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In Fixed-Point Toolbox, this data type is expressed as

sfix32_En30

In Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n =
17 bits to the right of the binary point, meaning the most significant bit is
a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two’s
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.

m+n+1 = -2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In Fixed-Point Toolbox, this data type is expressed as

sfix16_En17

4-8

Fixed-Point Numbers

To express this data type in Filter Design Toolbox, use

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. The binary point
is implied to be 2 bits to the right of the 16 bits, or that there are n = -2 bits to
the right of the binary point. One bit must be the sign bit, forcing m to be 17.

m+n+1 = 17+(-2)+1 = 16

Therefore this number is expressed as

Q17.-2

In Fixed-Point Toolbox, this data type is expressed as

sfix16_E2

In Filter Design Toolbox, this data type is expressed as

[16 -2]

4-9

4 Using the C62x and C64x DSP Libraries

Building Models

In this section...

“Overview” on page 4-10

“Converting Data Types” on page 4-10

“Using Sources and Sinks” on page 4-11

“Choosing Blocks to Optimize Code” on page 4-11

Overview
You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and Signal Processing Blockset. This section discusses issues
you should consider when you build models with blocks from these libraries.

Converting Data Types
Any blocks you connect in a model have compatible input and output data
types. In most cases, C62x or C64x DSP Library blocks handle only a limited
number of specific data types. Refer to any block reference page in Chapter
5, “Blocks — By Category” for a discussion of the data types that each block
accept sand produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks, you
often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting
from the driving block, or by back propagating from the next block. This can
be a good way to set the data type of a Simulink block to match a connected
C62x DSP Library block.

Some Signal Processing Blockset blocks and Simulink blocks also accept
fixed-point data types. Make the appropriate settings in the block parameters
when you connect them to a C62x DSP Library block.

To use Signal Processing Blockset or core Simulink blocks that do not handle
fixed-point data types with C62x DSP Library blocks in your model, you must
use an appropriate data type conversion block:

4-10

Building Models

• To connect fixed-point and nonfixed-point blocks, use the Simulink Data
Type Conversion block from the Data Type library of Simulink.

• To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks
from the C62x DSP Library.

• To connect blocks of varying nonfixed-point data types in your model, use
the Data Type Conversion block from the Signals and Systems Simulink
library

• To connect blocks of varying fixed-point data types in your model, use
the Simulink Data Type Conversion Inherited block from the Data Type
library of Simulink.

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks
The C62x DSP Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Signal Processing Blockset in
your models with C62x DSP Library blocks. See “Converting Data Types” on
page 4-10 for more information on incorporating blocks from other libraries
into your models.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the C62x DSP Library, the C64x DSP Library,
and the Signal Processing Blockset all have Autocorrelation blocks. How
do you choose which to include in your model? If you are building a
model to run on the C6713 DSK or on C62x hardware, choosing the block
from the C62x DSP Library always yields better optimized code. You can
use a similar block from another library if it provides functionality that
the C62x DSP Library block does not support, but you generate less well
optimized code.

In the same manner, if you are building a model to run on the C6416 DSK
or on C64x hardware, choosing the block from the C64x DSP Library always
yields better optimized code. You can use a similar block from another library

4-11

4 Using the C62x and C64x DSP Libraries

if it provides functionality that the C64x DSP Library block does not support,
but you generate less well optimized code.

4-12

5

Blocks — By Category

Target Preferences (c6000tgtprefs)
(p. 5-2)

Configure models for code generation
and targeting

RTDX Instrumentation (rtdxblocks)
(p. 5-2)

Add RTDX instrumentation to
generated code

C62x DSP (tic62dsplib) (p. 5-3) Work with C62x processors

C64x DSP (tic64dsplib) (p. 5-5) Work with C64x processors

C6416 DSK (c6416dsklib) (p. 5-7) Work with C6416 DSK boards

C6455 EVM (c6455evmlib) (p. 5-8) Work with SRIO on C6455 EVM
boards

C6713 DSK (c6713dsklib) (p. 5-8) Blocks provided for C6713 DSK
boards

DM642 EVM (dm642evmlib) (p. 5-8) Work with DM642 EVM boards

C6000 DSP Core Support
(c6000dspcorelib) (p. 5-9)

Work with all C6000 processors

Host Communication (hostcommlib)
(p. 5-9)

Work with host-side models that
communicate with C6000 processors
and boards

C6000 DSP Communication
(targetcommlib) (p. 5-10)

Work with C6000 processor and
board models that communicate
with hosts such as xPC Target or
host-side models

DSP/BIOS (dspbioslib) (p. 5-10) Work with C6000 models to provide
DSP/BIOS tasks and interrupts

5 Blocks — By Category

Target Preferences (c6000tgtprefs)

C6416DSK Configure model for C6416 DSP
Starter Kit

C6455DSK Configure model for C6455 DSP
Starter Kit

C6713DSK Configure model for C6713 DSP
Starter Kit

C6727PADK Configure model for C6727
Professional Audio Development Kit

Custom C6000 Configure model for
C6000-processor-based custom
hardware targets

DM642EVM Configure model for DM642
Evaluation Module

DM6437EVM Configure model for DM6437
Evaluation Module

TCI6482DSK Configure model for TCI 6482 DSK

RTDX Instrumentation (rtdxblocks)

From Rtdx Add RTDX communication channel
to send data from MATLAB to target

To Rtdx Add RTDX communication channel
to send data from target to MATLAB

5-2

C62x DSP (tic62dsplib)

C62x DSP (tic62dsplib)

Conversions (p. 5-3) Convert data types

Filters (p. 5-3) Filter input signals

Math and Matrices (p. 5-4) Perform mathematical operations

Transforms (p. 5-4) Perform transforms

Conversions

C62x Convert Floating-Point to Q.15 Convert single-precision
floating-point input signal to
Q.15 fixed-point

C62x Convert Q.15 to Floating-Point Convert a Q.15 fixed-point signal to
a single-precision floating-point

Filters

C62x Complex FIR Filter complex input signal using
complex FIR filter

C62x General Real FIR Filter real input signal using real
FIR filter

C62x LMS Adaptive FIR LMS adaptive FIR filtering

C62x Radix-4 Real FIR Filter real input signal using real
FIR filter

C62x Radix-8 Real FIR Filter real input signal using real
FIR filter

C62x Real Forward Lattice All-Pole
IIR

Filter real input signal using lattice
filter

C62x Real IIR Filter real input signal using IIR
filter

C62x Symmetric Real FIR Filter real input signal using FIR
filter

5-3

5 Blocks — By Category

Math and Matrices

C62x Autocorrelation Autocorrelate input vector or
frame-based matrix

C62x Block Exponent Minimum number of extra sign bits
in each input channel

C62x Matrix Multiply Matrix multiply two input signals

C62x Matrix Transpose Matrix transpose input signal

C62x Reciprocal Fraction and exponent portions of
reciprocal of real input signal

C62x Vector Dot Product Vector dot product of real input
signals

C62x Vector Maximum Index Zero-based index of maximum value
element in each input signal channel

C62x Vector Maximum Value Maximum value for each input
signal channel

C62x Vector Minimum Value Minimum value for each input signal
channel

C62x Vector Multiply Element-wise multiplication on
inputs

C62x Vector Negate Negate each input signal element

C62x Vector Sum of Squares Sum of squares over each real input
channel

C62x Weighted Vector Sum Weighted sum of input vectors

Transforms

C62x Bit Reverse Bit-reverse elements of each complex
input signal channel

C62x FFT Decimation-in-frequency forward
FFT of complex input vector

5-4

C64x DSP (tic64dsplib)

C62x Radix-2 FFT Radix-2 decimation-in-frequency
forward FFT of complex input vector

C62x Radix-2 IFFT Radix-2 inverse FFT of complex
input vector

C64x DSP (tic64dsplib)

Conversions (p. 5-5) Data conversion

Filters (p. 5-5) Filter input signals

Math and Matrices (p. 5-6) Mathematical operations

Transforms (p. 5-7) Transforms

Conversions

C64x Convert Floating-Point to Q.15 Convert floating-point signal to Q.15
fixed-point

C64x Convert Q.15 to Floating-Point Convert Q.15 fixed-point signal to
single-precision floating-point

Filters

C64x Complex FIR Filter complex input signal using
complex FIR filter

C64x General Real FIR Filter real input signal using real
FIR filter

C64x LMS Adaptive FIR LMS adaptive FIR filtering

C64x Radix-4 Real FIR Filter real input signal using real
FIR filter

C64x Radix-8 Real FIR Filter real input signal using real
FIR filter

5-5

5 Blocks — By Category

C64x Real Forward Lattice All-Pole
IIR

Filter real input signal using lattice
IIR filter

C64x Real IIR Filter real input signal using IIR
filter

C64x Symmetric Real FIR Filter real input signal using FIR
filter

Math and Matrices

C64x Autocorrelation Autocorrelate input vector or
frame-based matrix

C64x Block Exponent Minimum number of extra sign bits)
in each input channel

C64x Matrix Multiply Matrix multiply two input signals

C64x Matrix Transpose Matrix transpose input signal

C64x Reciprocal Fraction and exponent of reciprocal
of real input signal

C64x Vector Dot Product Vector dot product of real input
signals

C64x Vector Maximum Index Zero-based index of maximum value
element in each input signal channel

C64x Vector Maximum Value Maximum value for each input
signal channel

C64x Vector Minimum Value Minimum value for each input signal
channel

C64x Vector Multiply Element-wise multiplication on
inputs

C64x Vector Negate Negate each input signal element

C64x Vector Sum of Squares Sum of squares over each real input
channel

C64x Weighted Vector Sum Weighted sum of input vectors

5-6

C6416 DSK (c6416dsklib)

Transforms

C64x Bit Reverse Bit-reverse elements of each complex
input signal channel

C64x FFT Decimation-in-frequency forward
FFT of complex input vector

C64x Radix-2 FFT Radix-2 decimation-in-frequency
forward FFT of complex input vector

C64x Radix-2 IFFT Radix-2 inverse FFT of complex
input vector

C6416 DSK (c6416dsklib)

C6416 DSK ADC Digitized output from codec to
processor

C6416 DSK DAC Use codec to convert digital input to
analog output

C6416 DSK DIP Switch Simulate or read DIP switches

C6416 DSK LED Control LEDs

C6416 DSK Reset Reset to initial conditions

5-7

5 Blocks — By Category

C6455 EVM (c6455evmlib)

C6455 SRIO Config Configure generated code for serial
RapidI/O peripheral

C6455 SRIO Receive Configure generated code to receive
serial RapidI/O packets

C6455 SRIO Transmit Configure generated code to transmit
serial RapidI/O packets

C6713 DSK (c6713dsklib)

C6713 DSK ADC Digitized signal output from codec
to processor

C6713 DSK DAC Configure codec to convert digital
input to analog output

C6713 DSK DIP Switch Simulate or read DIP switches

C6713 DSK LED Control LEDs

C6713 DSK Reset Reset to initial conditions

DM642 EVM (dm642evmlib)

DM642 EVM Audio ADC Audio codec and peripherals

DM642 EVM Audio DAC Configure codec to convert digital
audio input to analog audio output

DM642 EVM FPGA GPIO Read User GPIO registers to read from
selected pins

DM642 EVM FPGA GPIO Write Write to GPIO registers

DM642 EVM LED Control LEDs

5-8

C6000 DSP Core Support (c6000dspcorelib)

DM642 EVM Reset Reset to initial conditions

DM642 EVM Video ADC Video decoders to capture analog
video

DM642 EVM Video DAC Video encoder to display video

DM642 EVM Video Port Video port to receive video data from
video input port

C6000 DSP Core Support (c6000dspcorelib)

Block Processing Repeat user-specified operation on
submatrices of input matrix, using
internal memory of the DSP for
increased efficiency

C6000 EDMA Configure EDMA Controller on
C6000 processor

CPU Timer Select timer and configure periodic
interrupt

Hardware Interrupt Generate Interrupt Service Routine

Idle Task Create free-running task

Memory Allocate Allocate memory section on C6000
target

Memory Copy Copy to and from memory section

Host Communication (hostcommlib)

Byte Pack Convert input signals to uint8
vector

Byte Reversal Reverse order of bytes in input word

5-9

5 Blocks — By Category

Byte Unpack Unpack UDP uint8 input vector into
Simulink data type values

UDP Receive Receive uint8 vector as UDP
message

UDP Send Send UDP message

C6000 DSP Communication (targetcommlib)

Byte Pack Convert input signals to uint8
vector

Byte Reversal Reverse order of bytes in input word

Byte Unpack Unpack UDP uint8 input vector into
Simulink data type values

C6000 IP Config Internet protocol configuration on
C6000 target

C6000 TCP/IP Receive Receive message from remote IP
address

C6000 TCP/IP Send Send message to remote IP interface

C6000 UDP Receive Receive uint8 vector as UDP
message

C6000 UDP Send Send UDP message to host

DSP/BIOS (dspbioslib)

DSP/BIOS Hardware Interrupt Generate Interrupt Service Routine

DSP/BIOS Task Create task that runs as separate
DSP/BIOS thread

DSP/BIOS Triggered Task Create asynchronously triggered
task

5-10

6

Blocks — Alphabetical List

Block Processing

Purpose Repeat user-specified operation on submatrices of input matrix, using
internal memory of the DSP for increased efficiency

Library Utilities

Description The Block Processing block extracts submatrices of a user-specified size
from each input matrix. It sends each submatrix to a subsystem for
processing, and then reassembles each subsystem output into the output
matrix, as shown in the following figure. While processing images as
matrices, this submatrix capability can greatly improve the throughput.

��������	

Note Because you modify the Block Processing block subsystem, the
link between this block and the block library is broken when you
click-and-drag a Block Processing block into your model. Thus, this
block is not automatically updated if you upgrade to a newer version of
the Target for TI C6000. To delete blocks from this subsystem without
triggering a warning, right-click on the block and select Look under
mask. If you search for library blocks in a model, this block is not
part of the results.

The blocks inside the subsystem dictate the following block
configuration information:

• Frame status of the input and output signals

• Whether the block supports single channel or multichannel signals

6-2

Block Processing

• Which data types this block supports

Use the Number of inputs and Number of outputs parameters to
specify the number of input and output ports on the Block Processing
block.

Use the Block size parameter to specify the size of each submatrix
in cell array format. Each vector in the cell array corresponds to one
input; the block uses the vectors in the order you enter them. If you
have one input port, enter one vector. If you have more than one input
port, you can enter one vector that is used for all inputs or you can
specify a different vector for each input. For example, to specify each
submatrix as a 2-by-3 array, enter {[2 3]}. The output matrix size is
determined by the size of the submatrix at the output of the subsystem
and the number of submatrices at the input. For example, if the output
submatrix size is 32x16 and the input submatrix sizes are 8x16, the
total output matrix size will be 256x256. If the block size specified does
not subdivide an input matrix evenly, i.e. there are leftover matrix
elements which are not covered by the subdivision, those uncovered
elements will be ignored.

Use the Overlap parameter to specify the overlap of each submatrix
in cell array format. Each vector in the cell array corresponds to the
overlap of one input; the block uses the vectors in the order they are
specified. If you enter one vector, each overlap is the same size. For
example, to specify that each 3-by-3 submatrix overlap by 1 row and 2
columns, enter {[1 2]}.

The Traverse order parameter determines how the block extracts
submatrices from the input matrix. If you select Row-wise, the
block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the
columns.

Click Open Subsystem to open the block subsystem. Click-and-drag
blocks into this subsystem to define the processing operations the block
performs on the submatrices. The input to this subsystem are the
submatrices defined by the Block size parameter.

6-3

Block Processing

Note When you place an Assignment block inside a Block Processing
block subsystem, the Assignment block behaves as though it is inside a
For Iterator block. For a description of this behavior, refer to “Iterated
Assignment” on the Assignment block reference page. To produce the
normal behavior of the Assignment block, use an Overwrite Values
block inside the Block Processing block subsystem.

Example This section provides an example that applies the block processing block
to multiply and add submatrices.

Multiple Inputs

In this example, you multiply each element of three input matrices by
two and add the results using the Block Processing block. Suppose you
have the following model:

6-4

Block Processing

1 Use the Block Processing block to perform the multiplication and
addition on submatrices of the three input matrices. Set the block
parameters as shown in the following figure:

• Number of inputs = 3

• Number of outputs = 1

• Block size = {[2 2]}

6-5

Block Processing

For each iteration, the block sends a 2-by-2 submatrix from each
input matrix to the Block Processing block subsystem to be processed.
The block calculates its total number of iterations using the
dimensions of the matrix connected to the top input port. In this case,
the first input is a 4-by-4 matrix. The block can extract four 2-by-2
submatrices from this input matrix, so the block iterates four times.

2 Click Open Subsystem.

The block subsystem opens.

6-6

Block Processing

3 Click and drag the blocks shown in the following table into the
subsystem.

Block Library Quantity

Gain Simulink / Math Operations 3

Sum Simulink / Math Operations 1

4 Use the Gain blocks to multiply the elements of each submatrix by
two. Set the Gain parameter to 2.

6-7

Block Processing

5 Use the Sum block to add the values. Set the Icon shape parameter
to rectangular and the List of signs parameter to +++.

6 Connect the blocks as shown in the following figure.

7 Close the subsystem and click OK.

8 Run the model.

6-8

Block Processing

The Block Processing block operates on the submatrices, assembles
the results into an output matrix, and then uses the Display block to
present the output matrix.

6-9

Block Processing

Dialog
Box

The Block Processing dialog box appears as shown in the following
figure.

Number of inputs
Enter the number of input ports on the Block Processing block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each
vector in the cell array corresponds to one input.

6-10

Block Processing

Overlap
Specify the overlap of each submatrix in cell array format. Each
vector in the cell array corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input
matrix. If you select Row-wise, the block extracts submatrices
by moving across the rows. If you select Column-wise, the block
extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block’s subsystem. Click and drag
blocks into this subsystem to define the processing the block
performs on the submatrices.

See Also Memory Allocate

Memory Copy

C6000 EDMA

6-11

Byte Pack

Purpose Convert input signals to uint8 vector

Library Host Communication Library in Target for TI C6000

Description Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Since UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using
the UDP protocol.

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block always has at least one input port and
only one output port.

6-12

Byte Pack

Byte alignment
This option specifies how the data types are aligned to form the
uint8 output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8 byte boundaries depending on
the value you choose. The default is 1. Given the alignment value,
each signal data value begins on multiples of the alignment value.
The alignment algorithm ensures that each element in the output
vector begins on a byte boundary specified by the alignment value
and relative to the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
with no holes between any data types for any combination of data
types and signals.

In general, when you have multiple data types of varying lengths,
specifying two-byte alignment means there might be gaps of 1 byte
between a uint8 or int8 value and another data type. In the pack
implementation, the block copies data to the output data buffer 1 byte
at a time. You can specify any of the data alignment options with any of
the data types.

Example As you see in the following figure, enter input data types in a cell array
in Input port data types. The order of the data types you enter must
match the order of the data types at the block input.

6-13

Byte Pack

In the cell array, you provide the order in which the block expects to
receive data — uint32, uint32, uint16, double, uint8, double, and
single. With this information, the block automatically provides the
proper number of input ports.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

In the example shown, the data types are

{'uint32','uint32','uint16','double','uint8','double','single'}

Assuming that all of the signals are scalars (no matrices or vectors in
this example), the first signal value in the vector starts at 0 bytes, the
second at 2 bytes, the third at 4 bytes, the fourth at 6 bytes, the fifth at
8 bytes, the sixth at 10 bytes, and the seventh at 12 bytes. Notice that
the packing algorithm leaves a one byte gap between the uint8 data
value and the double value.

See Also Byte Reversal, Byte Unpack

6-14

Byte Reversal

Purpose Reverse order of bytes in input word

Library Host Communication Library in Target for TI C6000

Description Byte reversal changes the order of the bytes in data you input to the
block. Use this when your process communicates between targets
that use different endianness, such as between Intel processors that
are little-endian and others that are big-endian. Texas Instruments
processors are generally little-endian by default.

When you transmit data to a processor with different endianness,
place a byte reversal block just before the send block in a model and
immediately after the receive block to ensure that transmitted data
has the correct endianness.

Dialog
Box

Number of inputs
Specify the number of input ports for the block. The number of
input ports adjusts automatically to match value so the number of
outputs is equal to the number of inputs.

6-15

Byte Reversal

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1 and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. Notice that the input
and output ports match for each path.

See Also Byte Pack, Byte Unpack

6-16

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Library Host Communication Library in Target for TI C6000

Description Byte Unpack is the inverse of the Byte Pack block. It pairs with the
UDP Receive block in models, receiving a vector of uint8 from a
UDP message and outputting Simulink data types in different sizes
depending on the input vector.

The block supports all Simulink data types.

Dialog
Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies the
dimension that the size function in MATLAB returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means the block applies that dimension to
all data types.

6-17

Byte Unpack

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types — single,
double, int8, uint8, int16, uint16, int32, and uint32, and
boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Alignment
Specifies how the data types are aligned in the input uint8 vector.
This should match the corresponding Byte Pack block alignment
value, and supports the same settings of 1, 2, 4, and 8 bytes.

Example Here is an example of the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry here is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16','double','uint8','double','single'}.

6-18

Byte Unpack

In addition, the Byte alignment setting matches as well. Output
port dimensions (cell array) now includes scalars and matrices to
demonstrate entering nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

6-19

C6000 EDMA

Purpose Configure EDMA Controller on C6000 processor

Library C6000 DSP Core Support Library (c6000dspcorelib) in Target for TI
C6000

Description Use this block to configure the Enhanced Direct Memory Access
(EDMA) Controller on C6000 processors. The controller manages data
transfers between the device peripherals on the C6000 processors and
the level two (L2) cache/memory controller. Data transfers handled
by the controller include:

• Host accesses to cache

• Accessing noncacheable memory

• Servicing cache

• Transferring data by user programs

EDMA controller handles transfers without involving the processor
and can process transfers between any addressable memory spaces,
including internal and external memory.

For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234C, from the Texas Instruments Web site.

Note The C6000 EDMA block does not support C64x+ processors, such
as the C6455 or TCI6482.

EDMA blocks provide two operating modes—open an EDMA channel
and allocate a table in EDMA parameter RAM (PaRAM).

The open channel mode opens an EDMA channel for the controller.
When you open a channel, EDMA sets the transfer parameters for the
channel and writes those to a table as PaRAM entries.

6-20

C6000 EDMA

In allocate table mode, the block sets the EDMA transfer parameters
and places them in a table in EDMA PaRAM without opening a
channel. With this mode, you can use EDMA channels and transfers
to develop complex memory structures like sorting, or circular buffers.
The allocate table operating mode lets you link multiple EDMA blocks
on one EDMA channel. One EDMA block opens an EDMA channel
and succeeding blocks link to the open channel and originating EDMA
block by the device handle setting.

Use the following procedure to link EDMA blocks in a model:

1 Add an EDMA block to your model, open the block dialog box, and
set Setup type to Open channel.

2 Assign an EDMA channel to use in EDMA channel (-1 for
auto-allocate) by entering a channel number or entering -1 to let
the block choose the channel.

3 In Device handle, provide a name for this EDMA block. The name
you enter becomes the block identifier for other blocks to link to this
block. Use any valid C variable string.

4 Close the block dialog box.

5 Add a second EDMA block to your model, and open the block dialog
box to set the block parameters.

6 Select Allocate table from the Setup type list.

7 Select the Link to event check box.

8 Enter the device handle from the earlier block to link to in Linked
event handle in this block. The two blocks are linked together
through the device handle and they use the same channel.

9 Close the block dialog box.

10 To link more EDMA blocks to this channel, repeat steps 5 through 9
for each new block, entering the same device handle.

6-21

C6000 EDMA

For a demonstration of using and linking EDMA blocks, refer to the
demo Custom Device Driver via Legacy Code Integration in the Target
for TI C6000 demos in the online Help system.

6-22

C6000 EDMA

Dialog
Box

6-23

C6000 EDMA

The preceding dialog box shown presents all of the parameters
available. In some cases, parameters are available only when you select
other parameters. The following list of block parameters describes all
of the available parameters for the block and when one parameter
enables another.

Setup type
Choose either Open channel or Allocate table from the list. If
this is the only EDMA block in your model, choose Open channel.
If your model includes multiple EDMA blocks, choose Open
channel when each block should use a different channel. Select
Allocate table for any block that you plan to link to another
EDMA block.

EDMA channel (-1 for auto-allocate)
Enter an integer from 0 to 63 to specify the EDMA channel to use.
If you enter -1, the block assigns the channel automatically from
the available channels.

Device handle
Provide a name for this block. The name you enter must be a
valid C variable. The EDMA controller uses the name as the
identifier for this block and open channel. Other EDMA blocks in
your model can link to this block and channel by using the device
handle you enter.

Element count
Specifies the number of elements in a frame. The value 65355 is
the maximum number of elements allowed in one frame. The
default value is 64 elements.

Element size
EDMA supports 32-bit words, 16-bit half words, and 8-bit bytes.
Select one of the list entries according to your needs.

Transfer source
Enter the address of the elements to transfer. Specify the
address as a hexadecimal value as shown by the default address
0x.00000000

6-24

C6000 EDMA

Transfer source address update
Select whether to enable transfer source update on the EDMA
controller. When you select an option from the list, the controller
updates the transfer source address according to your choice.
Choose one of the list entries shown in the following table.

Option Effect on Transfer
Source Address

Condition
Indicated

None Does not change
address after
submitting the transfer
request.

Indicates that all
of the elements
to transfer are
located at the
same address in
memory.

Increment Increases the transfer
address by the value
in Element count
after submitting the
transfer request.

Indicates that
the elements are
contiguous, with
each subsequent
element located
at a higher
address than
the previous
element.

Decrement Decreases the transfer
address by the value
in Element count
after submitting the
transfer request.

Indicates that
the elements are
contiguous, with
each subsequent
element located
at a lower
address than
the previous
element.

6-25

C6000 EDMA

Transfer destination
Enter the destination memory address for the data transfer.
Specify the address as a hexadecimal value as shown by the
default address 0x.00000000

Transfer destination address update
Select whether to enable transfer destination update on the
EDMA controller. When you select an option from the list, the
controller updates the transfer destination address according to
your choice. Choose one of the list entries shown in the following
table.

Option Effect on Transfer
Destination Address

Condition
Indicated

None Does not change
address after
submitting the transfer
request.

Indicates that
all of the
elements to
transfer are
located at the
same address
in memory.

6-26

C6000 EDMA

Option Effect on Transfer
Destination Address

Condition
Indicated

Increment Increases the transfer
address by the value in
Element count after
submitting the transfer
request.

Indicates
that the
elements are
contiguous,
with each
subsequent
element
located at
a higher
address than
the previous
element.

Decrement Decreases the transfer
address by the value in
Element count after
submitting the transfer
request.

Indicates
that the
elements are
contiguous,
with each
subsequent
element
located at a
lower address
than the
previous
element.

Link to event
You can link EDMA transfers together to create more complicated
memory applications such as buffers and sorting routines. When
you select Link to event to enable linking, the EDMA controller
link feature reloads the current transfer parameters from PaRAM
when the previous transfer is complete.

6-27

C6000 EDMA

Linked event handle
To link to another EDMA block to create more complex memory
applications, enter the device handle from the EDMA block to
link to in Linked event handle. This entry is an alphanumeric
string and the EDMA controller interprets your entry as a string.

Raise interrupt
Select this check box to direct the EDMA controller to raise an
interrupt when the transfer request completes. When you select
this parameter, you enable the Transfer complete code (-1 for
auto-allocate) option. Clearing Raise interrupt stops the controller
from raising the interrupt on TR completion.

Transfer complete code (-1 for auto-allocate)
The transfer code Indicates when the controller has submitted a
required number of transfer requests (TR). Provide an integer
from 0 and 62. On C67x processors, the code must be from 0 to
15. The default value of -1 lets the controller assign the transfer
code for this channel.

When you enable this option, the EDMA controller submits
the transfer request with a request that the controller signal
completion of the transfer with this code. When the transfer is
completed, the transfer controller returns the specified code to the
EDMA controller.

After the EDMA controller receives the transfer complete code in
response to the TR, the controller uses the code to trigger another
TR or to raise an interrupt to the processor when you select Raise
interrupt.

References For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234C, available from the Texas Instruments Web site.

For an introduction to the EDMA controller, refer to TMS320C6000
Peripherals Reference Guide, SPRU190d, which provides an overview of
the controller, available from the Texas Instruments Web site.

6-28

C6000 EDMA

See Also Memory Allocate

Memory Copy

6-29

C6000 IP Config

Purpose Internet protocol configuration on C6000 target

Library C6000 DSP Communication Library in Target for TI C6000

Description Adding this block to your model provides options to configure the IP
parameters for your C6000 board. Setting the options for the block
sets the address and name for your board and specifies your target
and Ethernet daughtercard.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements:

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more
information about configuring the card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block uses dynamic addressing, getting the address from the local
server or static addressing. If you have a dynamic host configuration
protocol (DHCP) server available, you can allow the server to provide
an IP address for your board. Dynamic IP addresses can be useful but
unreliable — they can change.

To use static addressing, create a static IP address by clearing Use
DHCP to allocate an IP address for DM642 EVM (requires DHCP
server). to enable the manual IP address configuration parameters.

Note When you use the UDP Send and Receive blocks in a model, you
must also include this block to set up the IP drivers for the Ethernet
parameters for the target networking capability.

Whether you choose to use dynamic addressing, you must set the Host
name, and select and set the Use the following CPU interrupt for
Ethernet driver (4-13) options.

6-30

C6000 IP Config

When you build and run your model, this block has no effect. It outputs
zeros. When you generate code from your model, this block adds the
code that configures IP on your board.

Dialog
Box

The block dialog box provides options on two tabs — Device Config
and IP Parameters.

Device Tab Options

Target platform
Specify your C6000 target by selecting the appropriate target
board from the list. Changing the target platform changes the
entry on the Ethernet adapter daughtercard list.

6-31

C6000 IP Config

Ethernet adapter daughtercard
After you select you target platform, this option lets you select
whatever daughtercard is available to implement Ethernet
communications on the target.

TCP/IP stack installation directory
To use the UDP and TCP blocks for the board, you must install
the TMS320C6000 TCP/IP Stack from Texas Instruments. Specify
the directory where the TMS320C6000 TCP/IP Stack from Texas
Instruments is installed.

Use the following CPU interrupt for Ethernet driver (4-13)
The Ethernet driver on the DM642 can respond to any one of the
CPU interrupts from 4 to 13. Enter one valid CPU interrupt for
the driver to react to. CPU interrupt 13 is the default interrupt.

Memory segment for internal TCP/IP stack buffers
Shows you the segment in memory where the TCP/IP stack
buffers reside. For the supported boards, the default setting and
location is SDRAM. You can change the location by entering the
name of the memory segment to use. TCP/IP stack buffers occupy
approximately 130 kB of memory. In most cases you should
locate the TCP/IP stack buffers in external memory. Be sure that
the segment you specify here agrees with the memory segment
allocation in the target preferences block in your model.

Enable status print-outs to Stdout
Select this option to direct the block to send IP status information
to the standard output device.

6-32

C6000 IP Config

IP Parameters Options

Use DHCP to allocate an IP address for DM642 EVM (requires a
DHCP server)

Selecting this parameter configures the board to get an IP address
from the local DHCP server on the network. If you select this
option and you do not have a DHCP server, the generated code
does not run correctly. Clearing this option enables all of the
IP configuration options for the block to let you define your IP
address manually.

6-33

C6000 IP Config

Use the following IP address for DM642 EVM
Specify an IP address for the DM642 EVM. This value is the
address that others use to communicate with the evaluation
module over IP. Use the full xxx.xxx.xxx.xxx format.

Subnet mask
Define the subnet mask address, entering the full subnet mask in
the format xxx.xxx.xxx.xxx. Subnet masks define how many bits
of the IP address are used to identify the network.

By using 1s in all the address bits that identify the network,
the subnet mask shows you which bits define the network and
which are internal to the network. In the figure, the subnet mask
255.255.255.0 indicates that the first three octets in the address
define the network.

Gateway IP
Enter one address for the gateway server or router that maintains
a more complete listing of the surrounding networks. Messages
that are destined for machines outside the local network are sent
to the gateway address for address resolution.

Domain name server IP
Enter the address of the server for the domain in which the target
is a member.

Domain name
Enter the name for the domain. Without the correct domain name,
the target cannot communicate on the network within the domain.

Host name (less than 64 characters)
Enter the name of the host. Usually this value is the NetBIOS
name for the machine if it exists.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send

6-34

C6000 TCP/IP Receive

Purpose Receive message from remote IP address

Library C6000 DSP Communication Library in Target for TI C6000

Description Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to receive messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more
information about configuring the card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block receives the message from the specified IP address on a host
machine and passes it out the Msg port to a downstream block. There
is no restriction on message size.

A second block output is a function call port that issues a function call
whenever a new message is available on the receive buffer.

In simulations, this block outputs a stream of data (default typeuint8_T)
from the Msg port with the first bytes set to 0xFF and the rest set to
0x00. When the function call port exists, it generates a function call
for every sample time hit.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

6-35

C6000 TCP/IP Receive

Dialog
Box

Main Pane

Connection type
Connection type specifies the connection initiation method used
for the block. Choose either Server or Client from the list. This
is a read-only parameter. The setting is for your information —
you cannot change it.

When you set this to Server, you create a listening socked at the
IP address and port in Local IP port. The TCP/IP layer uses
this socket to accept incoming connection requests. Any external
TCP/IP interface that sends TCP/IP data to this block must
actively seek the connection to establish communications (the
client model).

6-36

C6000 TCP/IP Receive

Remote address and IP port to receive from (format IP
Address:IP port)

Identifies the remote TCP/IP interface, by IP address and IP port,
from which the block expects to receive messages. The input
format uses the IP address and IP port identifier, separated by
a colon. IP port value ranges from 0 to 65535. Entering a 0 for
the IP port when the Connection type is Client specifies that
the TCP/IP stack automatically assigns a port to use to seek
connections.

Local IP port
This option identifies the IP port to use when Connection type
is Server and when it is Client.

When you choose Server, Local IP port specifies the well-known
port of the target TCP/IP server. Your IP port value must lie
between 1 and 65535.

When you specify Client for the connection type, Local IP port
specifies the TCP/IP address for the client socket. The IP port
value can range from 0 to 65535, where 0 specifies that the
TCP/IP stack assigns an ephemeral port automatically to seek
connections.

TCP/IP receive buffer size
Specifies the size of the buffer used for queuing incoming TCP/IP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP receive buffer on the heap.

All TCP/IP blocks that specify a common local IP port must share
a common TCP/IP receive buffer, because the size of the TCP/IP
buffer is set only for the listening socket. All active connecting
sockets inherit their buffer size value from the listening socket.

Enable blocking mode
Select this option to put the calling TCP/IP task into blocking
mode so that the block receives messages completely before

6-37

C6000 TCP/IP Receive

outputting the messages in the buffer to downstream blocks.
Blocks connected to the receive block do not execute until the
receive process completes. In blocking mode, program execution
for receiving data stops until data in the message buffer is
received.

Clearing this option puts the block in non blocking mode. The
block checks the number of bytes in the TCP/IP receive buffer and
returns output data only when the receive buffer contains more
data than requested.

The block receives or outputs data at any time. Processes do not
wait for data. Disabling blocking activates the Sample time
parameter and adds an additional function call port to the block
that indicates when the data port contains new, valid data.

Selecting blocking mode activates the Timeout parameter.

Sample Time
Use this option to specify when the block polls for new messages.
This parameter value should be positive.. Setting this to a specific
value, often large, can reduce the chances of TCP/IP messages
getting dropped. The default sample time is 0.01 seconds.

6-38

C6000 TCP/IP Receive

Data Types Pane

New Data Indicator
Use this option to specify how new data is indicated, either by a
function call or a boolean status.

Output Data Size
Use this option to specify the size of the output data, the units
depend on the output data type.

Output Data Type
Use this option to specify the type of the output data. The value
selected can be any built-in Simulink data type.

6-39

C6000 TCP/IP Receive

Output Signal
Use this option to specify whether the output signal is to be
frame-based or sample-based.

See Also C6000 TCP/IP Send, C6000 UDP Receive, C6000 UDP Send

6-40

C6000 TCP/IP Send

Purpose Send message to remote IP interface

Library C6000 DSP Communication Library in Target for TI C6000

Description

Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to send messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more
information about configuring the card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block sends the message to the specified IP address on a host
machine. There is no restriction on the data type of the message to be
sent, as long as it is a built-in Simulink data type. There is also no
restriction on the size of the data to be transmitted.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

6-41

C6000 TCP/IP Send

Dialog
Box

Connection type
Connection type specifies the connection initiation method used
for the block. Choose either Server or Client from the list. This
is a read-only value. You cannot change the setting from Server
to Client.

When you set this parameter to Server, you create a listening
socket at the IP address and port you enter in Local IP port.
The TCP/IP layer uses this socket to accept incoming connection
requests. For an external TCP/IP interface to receive TCP/IP data
from this block, it must actively seek the connection to establish
communications (the client model).

IP Address:IP port). External interfaces that want to exchange
data with this block must be listening at the specified remote IP
address and port.

6-42

C6000 TCP/IP Send

Remote IP address and IP port to send to (format IP address:IP
port)

Identifies the remote TCP/IP interface, by IP address and IP port,
to which the block expects to send messages. The input format
uses the IP address and IP port identifier, separated by a colon.
IP port value ranges from 0 to 65535. Entering a 0 for the IP port
when the Connection type is Client specifies that the TCP/IP
stack automatically assigns a port to use to seek connections.

Local IP port
This option identifies the IP port used when Connection type
is Server.

When the connection type is Server, Local IP port specifies the
well-known port of the target TCP/IP server. The IP port value
must lie between 1 and 65535.

TCP/IP send buffer size
Specifies the size of the buffer used for queuing outgoing TCP/IP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP send buffer on the heap.

All TCP/IP blocks that specify a common local IP port must share
a common TCP/IP send buffer, because the size of the TCP/IP
buffer is set only for the listening socket. All active connecting
sockets inherit their buffer size value from the listening socket.

See Also C6000 TCP/IP Receive, UDP Receive, UDP Receive

6-43

C6000 UDP Receive

Purpose Receive uint8 vector as UDP message

Library C6000 DSP Communication Library in Target for TI C6000

Description This block configures the Ethernet driver on the target to receive UDP
messages. A UDP message comes into this block from the transport
layer, usually TCP/IP. The block passes the message to the next
downstream block out the Msg port. One block output (Msg) is the data
vector from the message. A second output is a flag that indicates when
a new UDP message is available. A third output specifies the length
of the message for variable length messages.

To use this block with the C6416, or C6713 DSK targets, you must meet
the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more
information about configuring the card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

This block reads a single UDP packet every sample hit. It does not
attempt to receive multiple UDP packets to fill the output vector. If the
UDP packet size is greater than the output port width parameter, UDP
messages at the Msg port are truncated. The part for the UDP packet
that does not fit into the Msg port is discarded as a result. The missing
message content cannot be retrieved. Conversely, if the UDP packet size
is smaller than the Msg port width specified, the portion of the output
vector that does not fit into the specified size is invalid data.

In non blocking mode, the data in the Msg port is not valid unless the
block issues a function call.

C6000 UDP Receive blocks operate only to generate code for the target
Ethernet driver. They do not perform any function in simulation and
their simulation outputs are zeros.

6-44

C6000 UDP Receive

Note To use the C6000 UDP Send and C6000 UDP Receive blocks,
you must include the C6000 IP Config block to configure the Ethernet
parameters for the target network. This block sets up the IP drivers for
use and must be in the model for network-related processing.

Additional options let you decide whether the UDP messages work in
blocking mode and set the sampling time for polling for new messages.

Dialog
Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, not 0.0.0.0, directs
the block to accept messages from the specified address only.

6-45

C6000 UDP Receive

Selecting Enable blocking mode, disables the IP address to receive
from parameter. As a result, the block accepts messages from
any IP address. You must clear Enable blocking mode to be able
to set IP address to receive from to any value other than 0.0.0.0.
The block must be in non blocking mode to specify the address to
receive messages from via UDP.

IP port to receive from
Specify the port on this machine from which the block accepts
messages. The other end of the communication, usually a UDP
Send block, sends messages to this port. The default value is
25000, but the values can range from 1 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this parameter to a value as large
or larger than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer in which UDP messages are stored
when received. 8192 bytes is the default size. You need a buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Enable blocking mode
Select this option to put the UDP receive process in blocking mode
meaning the block outputs received messages before accepting
input new messages. In blocking mode, program execution for
receiving data stops until data in the buffer is sent. In non
blocking mode, the block receives data or sends data at any time.
Processes do not wait for data.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
The value entered here should always be greater than zero.
Setting this to a specific value, often large, can reduce the chances

6-46

C6000 UDP Receive

of UDP messages getting dropped. The default sample time is
0.01 seconds.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Send

6-47

C6000 UDP Send

Purpose Send UDP message to host

Library C6000 DSP Communication Library in Target for TI C6000

Description The UDP send block configures the target’s on-board Ethernet driver
to receive a uint8 vector that it sends as a UDP message to the host.
Models can contain only one C6000 UDP Send block.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-3 for more
information about configuring the card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

Msg input format must be a uint8 vector with UDP format. To use
variable length messages, supply the message length for each message
as input to the Len port. Message length can be any integer value in
bytes up to the input width of signal at the Msg port.

C6000 UDP Send blocks operate only to generate code for the target
Ethernet driver. They do not perform any function in simulation and
they output zero.

Note To use the UDP Send and Receive blocks, for network processing,
you must include the C6000 IP Config block to set up the IP drivers
for the target Ethernet network.

6-48

C6000 UDP Send

Dialog
Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
If you enter the address 255.255.255.255, the block broadcasts
message to any listening IP address. If you enter a specific
IP address, you limit the block to sending the message to the
specified address.

Remote IP port to send to (1–65535)
Specify the port on the host to which the block sends the message.
Port numbers range from 1 to 65535.

Note This port designation must match the port number where
you configure the host to receive UDP messages.

6-49

C6000 UDP Send

Use the following local IP port (–1 for automatic port
assignment)

Specify the local IP port the block sends the message from. If you
accept the default value of 1, the network automatically selects
the local IP port for sending the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address in this parameter.
If you entered a port number in the UDP Receive block option
Remote IP port to receive from, enter that port identifier in
this parameter also.

Show input port for the number of bytes to be sent
Adds a block input port that lets you specify the number of bytes
to send for each UDP message. The maximum allowed value is
1472 bytes. Use the input to dynamically the change the length
of each message if necessary.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Receive

6-50

C62x Autocorrelation

Purpose Autocorrelate input vector or frame-based matrix

Library C62x DSP Library — Math and Matrices

Description The Autocorrelation block computes the autocorrelation of an
input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian
code generation only.

Dialog
Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less
than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

6-51

C62x Autocorrelation

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range [0,
maxLag]. The maximum lag must be odd. Enable this parameter
by clearing the Compute all non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

6-52

C62x Bit Reverse

Purpose Bit-reverse elements of each complex input signal channel

Library C62x DSP Library — Transforms

Description The Bit Reverse block bit-reverses the elements of each channel of a
complex input signal, X. The Bit Reverse block is primarily used to
provide correctly-ordered inputs and outputs to or from blocks that
perform FFTs. Inputs to this block must be 16-bit fixed-point data types.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

Examples The Bit Reverse block reorders the output of the C62xRadix-2 FFT in
the model below to natural order.

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the
output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

6-53

C62x Bit Reverse

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

6-54

C62x Block Exponent

Purpose Minimum number of extra sign bits in each input channel

Library C62x DSP Library — Math and Matrices

Description The Block Exponent block first computes the number of extra sign bits
of all values in each channel of an input signal, and then returns the
minimum number of sign bits found in each channel. The number of
elements in each input channel must be even and at least six. All input
elements must be 32-bit signed fixed-point data types. The output is
a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
is using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

The Block Exponent block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

6-55

C62x Complex FIR

Purpose Filter complex input signal using complex FIR filter

Library C62x DSP Library — Filtering

Description The Complex FIR block filters a complex input signal X using a complex
FIR filter. This filter is implemented using a direct form structure.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X.

6-56

C62x Complex FIR

Coefficients (H)
Designate the filter coefficients in vector format. There must be
an even number of coefficients. This parameter is only visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

See Also C62xGeneral Real FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

6-57

C62x Convert Floating-Point to Q.15

Purpose Convert single-precision floating-point input signal to Q.15 fixed-point

Library C62x DSP Library — Conversions

Description The Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_fltoq15.
During code generation, this block calls the DSP_fltoq15 routine to
produce optimized code.

See Also C62xConvert Q.15 to Floating Point

6-58

C62x Convert Q.15 to Floating-Point

Purpose Convert a Q.15 fixed-point signal to a single-precision floating-point

Library C62x DSP Library — Conversions

Description The Convert Q.15 to Floating-Point block converts a Q.15 input signal
to a single-precision floating-point output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_q15tofl.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

See Also C62xConvert Floating-Point to Q.15

6-59

C62x FFT

Purpose Decimation-in-frequency forward FFT of complex input vector

Library C62x DSP Library — Transforms

Description The FFT block computes the decimation-in-frequency forward FFT, with
scaling between stages, of each channel of a complex input signal. The
input length of each channel must be both a power of two and in the
range 8 to 16,384, inclusive. The input must also be in natural (linear)
order. The block outputs a complex signal in natural order. Inputs and
outputs are signed 16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 2^k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. Therefore, in
order to ensure that the gain of the block matches that of the theoretical
FFT, the FFT block offsets the location of the binary point of the output
data type by (S-1) bits to the right relative to the location of the binary
point of the input data type. That is, the number of fractional bits of
the output data type equals the number of fractional bits of the input
data type minus (S-1).

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

6-60

C62x FFT

Dialog
Box

Algorithm In simulation, the FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

6-61

C62x General Real FIR

Purpose Filter real input signal using real FIR filter

Library C62x DSP Library — Filtering

Description The General Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. All inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and
supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

6-62

C62x General Real FIR

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_gen.
During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C62xComplex FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

6-63

C62x LMS Adaptive FIR

Purpose LMS adaptive FIR filtering

Library C62x DSP Library — Filtering

Description The LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

The following constraints apply to the inputs and outputs of this block:

• The scalar input must be a Q.15 data type.

• The scalar input must be a Q.15 data type.

• The scalar output is a Q1.30 data type.

• The output has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive, even
integer.

This block performs LMS adaptive filtering according to the equations

and

where

• designates the time step.

• is a vector composed of the current and last scalar inputs.

• is the desired signal. The output converges to as the filter
converges.

• is a vector composed of the current set of filter taps.

• is the error, or .

• is the step size.

6-64

C62x LMS Adaptive FIR

For this block, the input and the output are defined by

which combined with the first two equations, result in the following
equations that this block follows:

and must be produced externally to the LMS Adaptive FIR block.
Refer to Examples below for a sample model that does this.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. All
intermediate products have s32Q30 data type. The update equation is
as follows:

H H B X

R X H
i i i

i i
N

= + ×

= ×∑
S16Q15 S32Q30 S32Q30(() ())

()

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm, so
comparison to the leakage factor of the LMS block of the Signal
Processing Blockset is not appropriate.

6-65

C62x LMS Adaptive FIR

Dialog
Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive, even integer.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If selected, the filter taps are produced as output H. If not
selected, H is suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_firlms2.
During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.

6-66

C62x LMS Adaptive FIR

The portion of the model enclosed by the dashed line produces the
signal and feeds it back into the LMS Adaptive FIR block. The inputs
to this region are and the desired signal , and the output of this
region is the vector of filter taps . Thus this region of the model acts
as a canonical LMS adaptive filter. For example, compare this region to
the adaptfilt.lms function in Filter Design Toolbox. adaptfilt.lms
performs canonical LMS adaptive filtering and has the same inputs and
output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input in
some way similar to the one shown here. You must also provide the
signals and . This model simulates the desired signal by feeding

into a digital filter block. You can simulate your desired signal in a
similar way, or you may bring in from the workspace with a From
Workspace or codec block.

6-67

C62x Matrix Multiply

Purpose Matrix multiply two input signals

Library C62x DSP Library — Math and Matrices

Description The Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits. You
can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B
Accumulator
Value

Total Bits 16 16 32

Fractional
Bits

R S R + S

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see Examples below). You can either require the output
to have the same number of fractional bits as one of the two inputs, or
you can specify the number of output fractional bits in the Number of
fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

6-68

C62x Matrix Multiply

Dialog
Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

• Match input A — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

• Match input B — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

• Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value.

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

• User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

6-69

C62x Matrix Multiply

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Examples Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of
acc.

Q1.14 b31:b16

Match high bits of
prod.

Q.15 b30:b15

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional bits.
The following table shows the resulting data type and accumulator bits
used for the output signal for different settings of the Set fractional
bits in output to parameter.

6-70

C62x Matrix Multiply

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of
acc.

Q23.-8 b31:b16

Match high bits of
prod.

Q22.-7 b30:b15

See Also C62xVector Multiply

6-71

C62x Matrix Transpose

Purpose Matrix transpose input signal

Library C62x DSP Library — Math and Matrices

Description The Matrix Transpose block transposes an input matrix or vector. A 1-D
input is treated as a column vector and is transposed to a row vector.
Input and output signals are any real, 16-bit, signed fixed-point data
type.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

6-72

C62x Radix-2 FFT

Purpose Radix-2 decimation-in-frequency forward FFT of complex input vector

Library C62x DSP Library — Transforms

Description The Radix-2 FFT block computes the radix-2 decimation-in-frequency
forward FFT of each channel of a complex input signal. The input
length of each channel must be both a power of two and in the range 16
to 32,768, inclusive. The input must also be in natural (linear) order.
The output of this block is a complex signal in bit-reversed order. Inputs
and outputs are signed 16-bit fixed-point data types, and the output
data type matches the input data type.

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example
shows you how to use the C62x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

6-73

C62x Radix-2 FFT

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block
output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 IFFT

6-74

C62x Radix-2 IFFT

Purpose Radix-2 inverse FFT of complex input vector

Library C62x DSP Library — Transforms

Description The Radix-2 IFFT block computes the radix-2 inverse FFT of
each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=2^k. In order to ensure that the gain of the block matches that of
the theoretical IFFT, the Radix-2 IFFT block offsets the location of the
binary point of the output data type by k bits to the left relative to the
location of the binary point of the input data type. That is, the number
of fractional bits of the output data type equals the number of fractional
bits of the input data type plus k.

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

6-75

C62x Radix-2 IFFT

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 FFT

6-76

C62x Radix-4 Real FIR

Purpose Filter real input signal using real FIR filter

Library C62x DSP Library — Filtering

Description The Radix-4 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of filter
coefficients must be a multiple of four and must be at least eight. The
coefficients must also be in reversed order. All inputs, coefficients, and
outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

6-77

C62x Radix-4 Real FIR

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• All the same, enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

6-78

C62x Radix-8 Real FIR

Purpose Filter real input signal using real FIR filter

Library C62x DSP Library — Filtering

Description The Radix-8 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of coefficients
must be an integer multiple of eight. The coefficients must be in
reversed order. All inputs, coefficients, and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

6-79

C62x Radix-8 Real FIR

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xSymmetric Real FIR

6-80

C62x Real Forward Lattice All-Pole IIR

Purpose Filter real input signal using lattice filter

Library C62x DSP Library — Filtering

Description The Real Forward Lattice All-Pole IIR block filters a real input signal
using an autoregressive forward lattice filter. The input and output
signals must be the same 16-bit signed fixed-point data type. The
reflection coefficients must be real and Q.15. The number of reflection
coefficients must be greater than or equal to four, and they must be
in reversed order. Use an even number of reflection coefficients to
maximize the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog

• Input port — Accept the coefficients from port K

6-81

C62x Real Forward Lattice All-Pole IIR

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to four,
and they must be in reverse order. Using an even number of
reflection coefficients maximizes the speed of your generated code.
This parameter is visible when you select Specify via dialog
for the Coefficient source parameter. This parameter is tunable
in simulation.

Initial conditions
If your block initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent
to the TMS320C62x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

See Also C62xReal IIR

6-82

C62x Real IIR

Purpose Filter real input signal using IIR filter

Library C62x DSP Library — Filtering

Description The Real IIR block filters a real input signal X using a real
autoregressive moving-average (ARMA) IIR Filter. This filter is
implemented using a direct form I structure.

There must be five AR coefficients and five MA coefficients. The first
AR coefficient is always assumed to be one. Inputs, coefficients, and
output are Q.15 data types.

The Real IIR block supports discrete sample times and supports
little-endian code generation only.

Dialog
Box

Coefficient sources
Specify the source of the filter coefficients:

6-83

C62x Real IIR

• Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog

• Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR
coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all input
state initial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all output
state initial conditions. This matrix must have four rows.

6-84

C62x Real IIR

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C62xReal Forward Lattice All-Pole IIR

6-85

C62x Reciprocal

Purpose Fraction and exponent portions of reciprocal of real input signal

Library C62x DSP Library — Math and Matrices

Description The Reciprocal block computes the fractional (F) and exponential (E)
portions of the reciprocal of a real Q.15 input, such that the reciprocal
of the input is F*(2E). The fraction is Q.15 and the exponent is a 16-bit
signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block also supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

6-86

C62x Symmetric Real FIR

Purpose Filter real input signal using FIR filter

Library C62x DSP Library — Filtering

Description The Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. The number of coefficients must be of the
form 16k + 1, where k is a positive integer. This block wraps overflows
that occur. The input, coefficients, and output are 16-bit signed
fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result
in a 32-bit accumulator value. However, the Symmetric Real FIR block
only outputs 16 bits. You can choose to output 16 bits of the accumulator
value in one of the following ways.

Match input x Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the
input

Match coefficients h Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the
coefficients

Match high 16 bits of
acc.

Output bits 31 - 16 of the accumulator
value

6-87

C62x Symmetric Real FIR

Match high 16 bits of
prod.

Output bits 30 - 15 of the accumulator
value

User-defined Output 16 bits of the accumulator
value such that the output has the
number of fractional bits specified in
the Number of fractional bits in
output parameter

The Symmetric Real FIR block supports discrete sample times and
only little-endian code generation.

Dialog
Box

6-88

C62x Symmetric Real FIR

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

• Input port — Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. This parameter is visible
only when Specify via dialog is specified for the Coefficient
source parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

• Match input X — Sets the coefficients to have the same
number of fractional bits as the input

• Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

• User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

6-89

C62x Symmetric Real FIR

• Match input X — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

• Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in
the output to match the number of fractional bits in coefficients
H

• Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

• User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 6-70 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less

6-90

C62x Symmetric Real FIR

than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xRadix-8 Real FIR

6-91

C62x Vector Dot Product

Purpose Vector dot product of real input signals

Library C62x DSP Library — Math and Matrices

Description The Vector Dot Product block computes the vector dot product of two
real input vectors, X and Y. The input vectors must have the same
dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be even and greater
than or equal to four. The output is a signed 32-bit fixed-point scalar on
each channel, and the number of fractional bits of the output is equal to
the sum of the number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

6-92

C62x Vector Maximum Index

Purpose Zero-based index of maximum value element in each input signal
channel

Library C62x DSP Library — Math and Matrices

Description The Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal.
The input may be any real, 16-bit, signed fixed-point data type, and the
number of samples per input channel must be an integer multiple of
three. The output data type is a 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

6-93

C62x Vector Maximum Value

Purpose Maximum value for each input signal channel

Library C62x DSP Library — Math and Matrices

Description The Vector Maximum Value block returns the maximum value in each
channel (vector) of the input signal. The input can be any real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of four and must be at least 16.
The output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

See Also C62xVector Minimum Value

6-94

C62x Vector Minimum Value

Purpose Minimum value for each input signal channel

Library C62x DSP Library — Math and Matrices

Description The Vector Minimum Value block returns the minimum value in each
channel of the input signal. The input may be any real, 16-bit, signed
fixed-point data type. The number of samples on each input channel
must be an integer multiple of four and must be at least 16. The output
data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

See Also C62xVector Maximum Value

6-95

C62x Vector Multiply

Purpose Element-wise multiplication on inputs

Library C62x DSP Library — Math and Matrices

Description The Vector Multiply block performs element-wise 32-bit multiplication
of two inputs X and Y. The total number of elements in each input
must be even and at least eight, and the inputs must have matching
dimensions. The upper 32 bits of the 64-bit accumulator result are
returned. All input and output elements are 32-bit signed fixed-point
data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

See Also C62xMatrix Multiply

6-96

C62x Vector Negate

Purpose Negate each input signal element

Library C62x DSP Library — Math and Matrices

Description The Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be even and at least four. For complex signals, the number of
input elements must be at least two. The output is the same data type
as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

6-97

C62x Vector Sum of Squares

Purpose Sum of squares over each real input channel

Library C62x DSP Library — Math and Matrices

Description The Vector Sum of Squares block computes the sum of squares over
each channel of a real input. The number of samples per input channel
must be even and at least eight, and the input must be a 16-bit signed
fixed-point data type. The output is a 32-bit signed fixed-point scalar on
each channel. The number of fractional bits of the output is twice the
number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

6-98

C62x Weighted Vector Sum

Purpose Weighted sum of input vectors

Library C62x DSP Library — Math and Matrices

Description The Weighted Vector Sum block computes the weighted sum of two
inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of four. Inputs, weights, and output are Q.15 data types, and
weights must be in the range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Weight source
Specify the source of the weights:

• Specify via dialog — Enter the weights in the Weights (W)
parameter in the dialog

• Input port — Accept the weights from port W

6-99

C62x Weighted Vector Sum

Weights (W)
This parameter is visible only when Specify via dialog is
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix must
be equal to the number of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

6-100

C6416DSK

Purpose Configure model for C6416 DSP Starter Kit

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your C6416 DSP Starter Kit target. Adding this block to your Simulink
model provides access to the processor hardware settings you need to
configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the C6416 DSK must include this block,
or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present
in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks. It stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections.

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-101

C6416DSK

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the C6416 DSK
from a subsystem, the subsystem model must include a C6416DSK
target preferences block.

Dialog
Box

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

6-102

C6416DSK

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. If you are using one of the explicitly
supported boards, choose the target preferences block for that
board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not
match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

6-103

C6416DSK

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

6-104

C6416DSK

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

6-105

C6416DSK

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default if required.
Add more as you require by entering the full path to the library
with the library file in the text area. No additional libraries
appear here in the default configuration.

• Initialize functions — If your project requires an initialize
function, enter it here. By default, this is empty.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-106

C6416DSK

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Cache Configuration — specifies the cache configuration

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

6-107

C6416DSK

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on C670x processors provide IPRAM and
IDRAM memory segments by default.

• C6713DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

6-108

C6416DSK

Note Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes (one word).

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

6-109

C6416DSK

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list. In
Name, change the temporary name NEWMEM1 by entering the new
segment name. Enter the new name or click Apply to update the
temporary name on the list to the name you want.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
If your processor supports using a heap, as does the C6713, for
example, selecting this option allows you to create the heap, and
enables the Heap size option. Create heap is not available on
processors that either do not provide a heap or do not allow you to
configure the heap.

Using this option, you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

6-110

C6416DSK

Note You cannot control the location of the heap in the memory
segment. The only way to control the location of the heap in a
segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap allows you to name the heap. Enter your
label for the heap in Heap Label.

Heap Label
You enable this option by selecting Define label. Use this option
to provide the label for the heap. Any combination of characters
is accepted for the label, except reserved characters in C/C++
compilers.

Cache Configuration

Cache Level
Select L1D, L1P, or L2 cache to specify the cache level.

Configuration
After selecting the cache level, use this list to determine the size
of the cache to be allotted..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in

6-111

C6416DSK

contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom

6-112

C6416DSK

sections lists in the pane. All sections do not appear on all lists. The
list in which the string appears is shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the
code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

6-113

C6416DSK

String Section List Description of the Section Contents

.switch Compiler Jump tables for switch statements in
the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the
code containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler
generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Compiler Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

6-114

C6416DSK

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler and ignored by the C/C++
compiler.)

• .cio

• .pinit

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

6-115

C6416DSK

Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the DSP/BIOS
Object Placement list. All DSP/BIOS objects use the same
memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, just a placeholder for a
section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

6-116

C6416DSK

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialogs so
you can specify the DSP/BIOS stack size and stack segment (where the
stack is in memory) for asynchronous tasks created by the DSP/BIOS
Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

6-117

C6416DSK

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options
specify the stack use and locations on the stack for static and dynamic
tasks.

6-118

C6416DSK

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks
do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

See Also Custom C6000

6-119

C6416 DSK ADC

Purpose Digitized output from codec to processor

Library C6416 DSK Board Support in Target for TI C6000

Description Use the C6416 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from the analog input jacks on the board.
Placing an C6416 DSK ADC block in your Simulink block diagram lets
you use the AIC23 coder-decoder module (codec) on the C6416 DSK to
convert an analog input signal to a digital signal for the digital signal
processor.

Most of the configuration options in the block affect the codec. However,
the Output data type, Samples per frame, and Scaling options
relate to the model you are using in Simulink, the signal processor on
the board, or direct memory access (DMA) on the board. In the following
table, you find each option listed with the C6416 DSK hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6416 digital signal processor

Samples per
frame

Direct memory access module

Sample Rate Codec

Scaling TMS320C6416 digital signal processor

Word Length Codec

You can select one of two input sources from the ADC source list:

• Line In — the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

• Mic — the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

6-120

C6416 DSK ADC

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink,
the block puts monaural data into an N-element column vector. Stereo
data input forms an N-by-2 matrix with N data values and two stereo
channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

6-121

C6416 DSK ADC

Dialog
Box

ADC source
The input source to the codec. Line In is the default. Selecting
Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the
check box when you input monaural data. By default, stereo is
enabled. Monaural data comes from the right channel.

Sample rate
Sets the sample rate for the data output by the codec. Options are
8, 32, 44.1, 48, and 96 kHz, with a default of 8 kHz.

6-122

C6416 DSK ADC

Word length
Sets the length of each data word output from the codec, since the
input is analog. You choose from 16-, 20-, 24-, and 32-bit options.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer. To process single and double data types, the block uses
emulated floating-point instructions on the C6416 processor.

Scaling
Selects whether the codec data is unmodified, or normalized to
the output range to ±1.0, based on the codec data format. Select
either Normalize or Integer from the list. Normalize is the
default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. 64 samples per frame is the
default setting. Notice that the frame rate depends on the sample
rate and frame size. For example, if your input is 8000 samples
per second, and you select 32 samples per frame, the frame rate
is 250 frames per second. The throughput remains the same at
8000 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model
base rate/Simulink base rate as determined in the Solver options
in Configuration Parameters. Selecting Inherit sample time
directs the block to use the specified rate in model configuration.
Entering -1 configures the block to accept the sample rate from
the upstream HWI, Task, or Triggered Task blocks.

See Also C6416 DSK DAC

6-123

C6416 DSK DAC

Purpose Use codec to convert digital input to analog output

Library C6416 DSK Board Support in Target for TI C6000

Description Adding the C6416 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the
LINE OUT connection on the C6416 DSK board. When you add the
C6416 DSK DAC block, the digital signal received by the codec is
converted to an analog signal. After converting the digital signal to
analog form (digital-to-analog (D/A) conversion), the codec sends the
signal to the output jack.

One of the configuration options in the block affects the codec. The
remaining options relate to the model you are using in Simulink and
the signal processor on the board. In the following table, you find each
option listed with the C6416 DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6416 Digital Signal Processor

Scaling TMS320C6416 Digital Signal Processor

Word Length Codec

6-124

C6416 DSK DAC

Dialog
Box

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog
correctly. The default value is 16 bits, with options of 20, 24, and
32 bits. The word length you set here should always match the
ADC setting.

Sampling rate
Sets the sampling rate for the block output to the output ports on
the target. Select from the list of available rates.

Scaling
Selects whether the input to the codec represents unmodified data,
or data that has been normalized to the range ±1.0. Matching the
setting for the C6416 DSK ADC block is usually appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap or
Saturate to handle the result of an overflow in an operation. If
efficient operation matters, Wrap is the more efficient mode.

6-125

C6416 DSK DAC

See Also C6416 DSK ADC

6-126

C6416 DSK DIP Switch

Purpose Simulate or read DIP switches

Library C6416 DSK Board Support in Target for TI C6000

Description Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6416 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6416 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

Selected Selected Cleared Cleared 0011 3

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

6-127

C6416 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6416
DSK (Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting — the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown in the table above. Your process uses the result
in the same way whether in simulation or in code generation. In code
generation and when running your application, the block code ignores
the settings for Switch 0, Switch 1, Switch 2 and Switch 3 in favor
of reading the hardware switch settings. When the block reads the DIP
switches, it reports the results as either a Boolean string or an integer
value as the following table shows.

6-128

C6416 DSK DIP Switch

Output Values From The User DIP Switches on the C6416 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

6-129

C6416 DSK DIP Switch

Output Values From The User DIP Switches on the C6416 DSK
(Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off On On On 1110 14

On On On On 1111 15

Dialog
Box

Opening this dialog causes a running simulation to pause. Refer to
“Changing Source Block Parameters During Simulation” in your online
Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

6-130

C6416 DSK DIP Switch

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values.

Each vector element represents the status of one DIP switch;
the first is Switch 0 and the fourth is Switch 3. The data type
Integer converts the logical string to an equivalent unsigned 8-bit
(uint8) value. For example, when the logical string generated
by the switches is 0101, the conversion yields 5 — the MSB is 0
and the LSB is 1.

Sample time
Specifies the time between samples of the signal. The default is
1 second between samples, for a sample rate of one sample per
second (1/Sample time).

6-131

C6416 DSK LED

Purpose Control LEDs

Library C6416 DSK Board Support in Target for TI C6000

Description Adding the C6416 DSK LED block to your Simulink block diagram lets
you trigger the user light emitting diodes (LED) on the C6416 DSK. To
use the block, send a nonzero real scalar to the block. The C6416 DSK
LED block controls all four user LEDs located on the C6416 DSK.

When you add this block to a model, and send an integer to the block
input, the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

For example, sending the value 6 turns on the diodes to show 0110
(off/on/on/off). 13 turns on the diodes to show 1101.

All LEDs maintain their state until the C6416 DSK LED block receives
an input value that changes the state. Enabled LEDs stay on until
the block receives an input value that turns the LEDs off; disabled
LEDs stay off until turned on. Resetting the C6416 DSK turns off all
user LEDs. When you start an application, the LEDs are turned off
by default.

Dialog
Box

6-132

C6416 DSK LED

This dialog does not have any user-selectable options.

6-133

C6416 DSK Reset

Purpose Reset to initial conditions

Library C6416 DSK Board Support in Target for TI C6000

Description Double-clicking this block in a Simulink model window resets the
C6416 DSK that is running the executable code built from the model.
When you double-click the C6416 DSK Reset block, the block runs the
software reset function provided by CCS that resets the processor on
your C6416 DSK. Applications running on the board stop and the signal
processor returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any block
in the model. When you double-click this block in the block library, it
resets your C6416 DSK. In other words, any time you double-click a
C6416 DSK Reset block, you reset your C6416 DSK.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog.

6-134

C6455DSK

Purpose Configure model for C6455 DSP Starter Kit

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your C6455 DSP Starter Kit target. Adding this block to your Simulink
model provides access to the processor hardware settings you need to
configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the C6455 DSK must include this block
or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present
in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks. It stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections.

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-135

C6455DSK

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the C6455 DSK
from a subsystem, the subsystem model must include a C6455DSK
target preferences block.

Dialog
Box

6-136

C6455DSK

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. If you are using one of the explicitly
supported boards, choose the target preferences block for that
board and this field shows the proper board type.

Processor
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not

6-137

C6455DSK

match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

6-138

C6455DSK

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
00,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Operating System
Select none or DSP/BIOS.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory. The examples in the
following figure use the string.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

6-139

C6455DSK

• Source files Enter the full paths to source code files to use
with this target. The default is blank.

• Include paths — C6455 DSK requires some additional files
to work correctly. When you add this block to your model, the
default include paths appear as shown in the following figure.
These entries include chip support libraries, a BIOS addition,
and an RTDX library. All are necessary for use. You can add
further paths by typing the path into the text area.

• Libraries — These entries identify specific libraries that the
target requires. They appear on the list by default, as shown
on the following figure.

• Initialize functions — C6455 DSK targets require a
specific initialization function, listed here as DSK6455_init.
Enter others if needed.

6-140

C6455DSK

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the
list of available boards, select the one for which you are targeting
your code.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-141

C6455DSK

The Memory pane contains memory options in three areas as shown in
the preceding figure:

• Physical Memory — Specifies the processor and board memory map

• Cache Configuration — Specifies the cache configuration

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

6-142

C6455DSK

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on C670x processors provide IPRAM and
IDRAM memory segments by default.

• C6713DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

6-143

C6455DSK

Note Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes (one word).

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

6-144

C6455DSK

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list. In
Name, change the temporary name NEWMEM1 by entering the new
segment name. Enter the new name or click Apply to update the
temporary name on the list to the name you want.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
If your processor supports using a heap, as does the C6713, for
example, selecting this option allows you to create the heap, and
enables the Heap size option. Create heap is not available on
processors that either do not provide a heap or do not allow you to
configure the heap.

Using this option, you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

6-145

C6455DSK

Note You cannot control the location of the heap in the memory
segment. The only way to control the location of the heap in a
segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap allows you to name the heap. Enter your
label for the heap in Heap Label.

Heap Label
You enable this option by selecting Define label. Use this option
to provide the label for the heap. Any combination of characters
is accepted for the label, except reserved characters in C/C++
compilers.

Cache Configuration

Cache Level
Select L1D, L1P, or L2 cache to specify the cache level.

Configuration
After selecting the cache level, use this list to determine the size
of the cache to be allotted..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in

6-146

C6455DSK

contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

Within the pane shown in this figure, you configure the allocation of
sections for Compiler and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, and Custom sections lists in the pane. All

6-147

C6455DSK

sections do not appear on all lists. The list the string appears on is
shown in the table.

String Section List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Default Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Default Tables for initializing global and static
variables and constants

.cio Default Standard I/O buffer for C programs

.const Default Data defined with the C qualifier and
string constants

.data Default Program data for execution

.far Default Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Default Load allocation of the table of global
object constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Default The global stack

6-148

C6455DSK

String Section List Description of the Section Contents

.switch Default Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Default Dynamically allocated object in the code
containing the heap

.text Default Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your “Link for
Code Composer Studio” online help.

Default Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Default sections list, you find both initialized
sections (sections that contain data or executable code) and
uninitialized sections (sections that reserve space in memory).
The initialized sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

6-149

C6455DSK

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler and ignored by the C/C++
compiler)

• .cio

• .pinit

When you highlight a section on the list, Placement shows you
where the section is presently allocated in memory.

Placement
Shows you where the selected Default sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

Memory Placement of Custom Sections
When your program uses code or data sections that are not
included the Compiler sections sections list, you add the new
sections to this list. Initially, the Custom sections list contains
no fixed entries, but instead, a placeholder for a section for you to
define.

Placement
Shows where the selected Custom sections list entry is allocated
in memory. You change the memory allocation by selecting a
different location from the Placement list. The list contains the
memory segments available on C6000 processors and changes
based on the processor you are using.

6-150

C6455DSK

Name
You enter the name for your new section in this field. To add a
new section, click Add. Then, replace the temporary name with
the name you want to use. Although the temporary name includes
a period at the beginning you do not need to include the period in
your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Contents
Specify whether the custom section specified by Name contains
code or data.

Attributes
Specify attributes of the section selected in the Custom
Sectionslist.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter a new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their dialog boxes so
you can specify the DSP/BIOS stack size and stack segment (where the

6-151

C6455DSK

stack is in memory) for asynchronous tasks created by the DSP/BIOS
Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

In the pane shown in this figure, you configure the options for DSP/BIOS
tasks, such as the task manager and scheduler configuration. The

6-152

C6455DSK

Sections pane includes DSP/BIOS configuration options as well. The
options specify the stack use and locations on the stack for static and
dynamic tasks.

DSP/BIOS sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list, you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors and
changes based on the processor you are using.

Section Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Data Object Placement
Select the location of data objects. Choose from the list of memory
locations, L1D, IRAM, or DDR.

Code Object Placement
Select the location of code objects. Choose from the list of memory
locations, L1D, L1P, IRAM, or DDR.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. A value of 4096 bytes is the default. You can set any size up
to the limits for the processor. Set the stack size so that tasks do
not use more memory than you allocate. While any task can use
more memory than the stack includes, failure to set the stack size

6-153

C6455DSK

might cause the task to write into other memory or data areas,
possibly causing unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. However, infrequently used tasks
usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

See Also Custom C6000

6-154

C6455 SRIO Config

Purpose Configure generated code for serial RapidI/O peripheral

Library C6455 EVM Board Support Library (c6455evmlib) in Target for TI
C6000

Description The C6455 processor supports serial RapidIO (SRIO) using the
RapidI/O peripheral from Texas Instruments. RapidI/O is a high-speed
packet-switched interconnect for chip to chip and board to board
communications. This block provides the parameters you use to
configure the SRIO peripheral on your hardware to communicate
between different processors.

The dialog box parameters that you set provide values to initialize the
registers on the processor relevant to SRIO processing.

Because SRIO handles communications between two platforms, it
requires two models or sets of code—one running on the local device and
one running on the remote device. Both models must include the SRIO
Config block to configure their SRIO communications capability, and
the blocks must have the correct device IDs to refer to one another.

SRIO blocks implement both direct I/O and doorbell interrupt forms
of SRIO communications. Direct I/O provides data transfer directly
between two processors. With direct I/O you have burst-write and
burst-read access with the remote device. The SRIO peripheral is
configured as a 4x SRIO, meaning that all four links of SRIO are
bundled together for the fastest link. Direct I/O uses the Load/Store
Unit (LSU) and Direct Memory Access (DMA) Engine to control and
monitor the data transfer.

Doorbell interrupt enables the local device to initiate CPU interrupts
on the remote device if burst write is enabled. Such interrupts signal
that data is ready to transfer. Both devices, local (source) and remote
(destination) include doorbell message queues. The destination device
reads its queue to determine the interrupt source and to process the
doorbell INFO field.

6-155

C6455 SRIO Config

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo in the online Help
system demos for Target for TI C6000.

Dialog
Box

Local device ID (16–bit hex)
Enter the ID of the local device to configure the device ID field in
the generated code. Use a 16–bit hexadecimal format. When you
configure SRIO Transmit and SRIO Receive blocks in models, the
local device ID in this field must match the remote device ID for
the Transmit and Receive block in each model.

In the generated code, you see the input device ID as a constant
mapped to the following program code entry.

#define SRIO_LARGE_DEV_ID 0xCAFE

Operation rate
Set the operating frequency of the SRIO serializer/deserializer
(SERDES). The primary operating frequency of the SERDES

6-156

C6455 SRIO Config

is determined by the reference clock frequency and PLL
multiplication factor. Select Full, Half, or Quarter from the list.

• Full causes two data samples to be taken for each PLL output
clock cycle.

• Half causes one data sample to be taken for each PLL output
clock cycle.

• Quarter causes one data sample and a delay for every two PLL
output cycles

The default setting is Full.

Interrupt number for SRIO events
Assigns an interrupt number to initiate for SRIO events. After
you select a value from the list, you see a constant similar to the
following defined in the generated code

#define SRIO_INTR_NUMBER 4

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

6-157

C6455 SRIO Receive

Purpose Configure generated code to receive serial RapidI/O packets

Library C6455 EVM Board Support Library (c6455evmlib) in Target for TI
C6000

Description SRIO receive blocks add the ability to receive SRIO packets to the
processor that is running the embedded code. Each receive block has
two output ports—theStat port that is permanent and the optional Ptr
port, that report the status of the block and output a pointer to data.

Writing data between DSPs is more efficient than writing because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the time needed to transfer data by reading from the
remote device can be much longer than that required for writing from
the remote device. Use the doorbell interrupt options to signal remote
devices and to coordinate the data transfer between processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat
Port

Description

1 SRIO request is done (success)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO
request queue is full

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo in the online Help
system demos for Target for TI C6000.

6-158

C6455 SRIO Receive

Dialog
Box

The block dialog box provides parameters on two panes:

• Main pane includes parameters that configure the data transfer
operation, the doorbell interrupt ID, and various address settings
for the remote device and host.

• Data properties pane parameters configure the data type and size
that the block reads.

6-159

C6455 SRIO Receive

Main Pane

Remote device ID (16–bit hex)
Enter the ID of the remote device in 16–bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Receive blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block in the transmitting model.

6-160

C6455 SRIO Receive

Accept doorbell interrupt from remote device
Enables the doorbell interrupt operation for the block. The
block always waits until it receives a doorbell interrupt before it
reads from the remote device. Selecting this option enables the
Doorbell interrupt ID parameter so you can set the interrupt
ID.

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to determine which SRIO
Receive block should be awakened based on the incoming
interrupt value. Select a value from the list. If your model
contains more than one SRIO receive block, each receive block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create and SRIO Transmit block with this ID
to send the doorbell interrupt.

Read from remote device
Selecting this option tells the block to perform a burst read from
the remote device at the address in Remote address. If you clear
this option, you must select Accept doorbell interrupt from
remote device.

Remote address (32-bit hex aligned to an 8-byte boundary
This address specifies where the data is being read from the
remote device. The address you enter here should match the local
address of the corresponding SRIO Transmit block.

This address should align to an 8-byte boundary in memory.

Show output port for local address pointer
When you select this parameter, the output port Ptr returns the
pointer that you specify in Local address (32–bit hex aligned
to an 8 byte boundary). Clearing this option removes the Ptr
port from the block.

Local address (32–bit hex aligned to an 8 byte boundary
This address specifies the destination for the data to transfer. This
address should match the remote address of the corresponding

6-161

C6455 SRIO Receive

SRIO Transmit block. You will need it if the SRIO Transmit block
performs burst-write operations.

Enable blocking mode
SRIO receive blocks can operate in either blocking or nonblocking
modes.

• Selecting this option puts the block in blocking mode and
the block waits for a doorbell interrupt to come or timeout to
occur before passing program control to downstream blocks or
performing any read operations.

— Clearing Enable blocking mode directs the block to poll
the doorbell interrupt status register to determine whether
the SRIO Transmit block sent a doorbell packet.

— Sending the packet indicates that the transmitting block
completed a data transfer to this block.

• Clearing this option to put the block in nonblocking mode
enables the Sample time option. In nonblocking mode,
Simulink uses the sample time to determine the polling period
the block uses for polling the interrupt status register.

Enable blocking mode is not available when you clear Enable
doorbell. Clearing Accept doorbell interrupt form remote
device also disables this option because blocking mode refers to
the doorbell interrupt process.

Sample time
Determines the polling period, in seconds, for the block in
nonblocking mode. Enter the time period to wait between polls.
To enable this option, clear Enable blocking mode and select
Accept doorbell interrupt from remote device.

Timeout value
In blocking mode, this value determines how long the block waits
for a doorbell interrupt before it sets the Stat output port to
Timeout status. Enter a time in seconds (the default value is inf
to block until the block receives a doorbell interrupt). The default

6-162

C6455 SRIO Receive

time-out value is 1 second. Clearing either Enable blocking
mode or Accept doorbell interrupt from remote device
disables this option.

Data Properties Pane

6-163

C6455 SRIO Receive

Output data size
Use this to specify the amount of data in bytes to transfer. Enter
either a scalar to define a vector of elements or a two-element
array. For example, enter 256 to specify a vector of 256 elements.
To specify a two-dimensional array of 512 elements, enter [256 2].
The block uses this value to determine the size of the Ptr port. If
you select the Frame-based option, you must enter the vector, or
scalar value, as an array. Thus the 256-element vector example
entry becomes [256 1].

Output data type
Specify the data type used for the output. With this information,
the block calculates the size of the data transfer in bytes using
this value and the Output data size value.

Frame-based
When you select this option, the block treats the data
as frame-based rather than sample-based. If you select
Frame-based, you must enter your output data size as a
two-element array. For example, to specify a vector that contains
256 elements, enter [256 1].

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

6-164

C6455 SRIO Transmit

Purpose Configure generated code to transmit serial RapidI/O packets

Library C6455 EVM Board Support Library (c6455evmlib) in Target for TI
C6000

Description SRIO transmit blocks add the ability to transmit SRIO packets to
another processor. Each transmit block has an input Ptr port, and an
optional Stat output port controlled by the Show output port for
status option.

Writing data between DSPs is more efficient than reading because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the time needed to transfer data by reading from the
remote device can be much longer than that required for writing from
the remote device. SRIO read may require multiple requests. Use the
doorbell interrupt options signal remote devices and to coordinate the
data transfer between the processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat
Port

Description

1 SRIO request is done (success)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO
request queue is full

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo in the online Help
system demos for Target for TI C6000.

6-165

C6455 SRIO Transmit

Dialog
Box

Remote device ID (16–bit hex)
Enter the ID of the remote device in 16–bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Transmit blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block on the receiving end of the transmission.

Send doorbell interrupt to remote device
Enables the doorbell interrupt operation for the bloc, which sends
a doorbell interrupt after writing data to the remote device.
Selecting this option enables Doorbell interrupt ID.

6-166

C6455 SRIO Transmit

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to set the doorbell INFO field
of the SRIO packet. Select a value from the list. If your model
contains more than one SRIO transmit block, each transmit block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create an SRIO Receive block with this ID
to receive the doorbell interrupt. The block uses this value to set
the doorbell INFO field in an SRIO packet.

Write to remote device
Selecting this option tells the block to perform a burst write using
Direct IO to the device at the address in Remote device ID. If
you clear this option, you must select Send doorbell interrupt
to remote device. Selecting this option enables the Remote
address (32–bit hex aligned to an 8–byte boundary option.

Remote address (32-bit hex aligned to an 8-byte boundary
Enter the address to write the output data to at the remote device.

Clearing Write to remote device disables this option. It
becomes and do not care field.

To ensure efficient data transfers, enter an address that aligns to
an 8–byte boundary in memory.

Specify local address for incoming signal buffer
Select this option to enable you to specify the local address for
the input data to this block. Select his option if you are pairing
this block with an SRIO Receive block that performs burst-read
operation. The SRIO Receive block needs to know the specific
address to read the data from. When you select this option,
you enable Local address (32–bit hex aligned to an 8 byte
boundary) where you enter the local address.

Local address (32-bit hex aligned to an 8 byte boundary
This address specifies the location of the incoming data. For burst
write operations, this value is a local address that SRIO uses to
form the direct I/O packets.

6-167

C6455 SRIO Transmit

To ensure efficient data transfers, enter an address that aligns to
an 8–byte boundary in memory.

Show output port for status
When you select this parameter, the output port Stat appears on
the block. Stat returns the status of the write transmit operation.

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

6-168

C64x Autocorrelation

Purpose Autocorrelate input vector or frame-based matrix

Library C64x DSP Library — Math and Matrices

Description The C64x Autocorrelation block computes the autocorrelation of an
input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian
code generation only.

Dialog
Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less
than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

6-169

C64x Autocorrelation

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range
[0, maxLag]. The maximum lag must be odd, and (maxLag+1)
must be divisible by 4, such as maxLag equal to 3, 7, or 19.
This parameter is enabled when you clear the Compute all
non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

6-170

C64x Bit Reverse

Purpose Bit-reverse elements of each complex input signal channel

Library C64x DSP Library — Transforms

Description The C64x Bit Reverse block bit-reverses the elements of each channel
of a complex input signal X. The Bit Reverse block is used primarily to
provide correctly-ordered inputs and outputs to or from blocks that
perform FFTs. Inputs to this block must be 16-bit fixed-point data types.
Input vector lengths must be a power of two. Because you use this block
with FFT blocks the input vector length must be a power of two.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

Examples The Bit Reverse block reorders the output of the C64x Radix-2 FFT in
the model below to natural order.

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the

6-171

C64x Bit Reverse

output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

6-172

C64x Block Exponent

Purpose Minimum number of extra sign bits) in each input channel

Library C64x DSP Library — Math and Matrices

Description The C64x Block Exponent block first computes the number of extra sign
bits of all values in each channel of an input signal, and then returns
the minimum number of sign bits found in each channel. The number
of elements in each input channel must be a multiple of eight. Input
elements must be 32-bit signed fixed-point data types. The output is
a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
is using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

Block Exponent blocks support both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

6-173

C64x Complex FIR

Purpose Filter complex input signal using complex FIR filter

Library C64x DSP Library — Filtering

Description The C64x Complex FIR block filters a complex input signal X using
a complex FIR filter. This filter is implemented using a direct form
structure. Each input channel must contain an integer multiple of four
samples, with four samples as the minimum required.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types. For each channel, the
number of input elements must be a multiple of four.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

6-174

C64x Complex FIR

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog box

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X. Choosing
this option adds an input port to the block.

Coefficients (H)
Designate the filter coefficients in vector format. There must
be an even number of coefficients. This parameter is visible
only when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
Lets you provide initial conditions for the filter. If your initial
conditions for the channels are

• All the same, enter a scalar that applies to all channels.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. These
conditions then apply to all channels. The length of this vector
must be one less than the number of coefficients.

• Different across channels, enter a matrix containing all initial
conditions for every individual channel. The number of rows of
this matrix must be one less than the number of coefficients,
and the number of columns of this matrix must be equal to
the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

See Also C64x General Real FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real
FIR, C64x Symmetric Real FIR

6-175

C64x Convert Floating-Point to Q.15

Purpose Convert floating-point signal to Q.15 fixed-point

Library C64x DSP Library — Conversions

Description The C64x Convert Floating-Point to Q.15 block converts a
single-precision floating-point input signal to a Q.15 output signal.
Input can be real or complex. For real inputs, the number of input
samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_fltoq15.
During code generation, this block calls the DSP_fltoq15 routine to
produce optimized code.

See Also C64x Convert Q.15 to Floating Point

6-176

C64x Convert Q.15 to Floating-Point

Purpose Convert Q.15 fixed-point signal to single-precision floating-point

Library C64x DSP Library — Conversions

Description The C64x Convert Q.15 to Floating-Point block converts a Q.15 input
signal to a single-precision floating-point output signal. Input can be
real or complex. For real inputs, the number of input samples must
be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_q15tofl.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

See Also C64x Convert Floating-Point to Q.15

6-177

C64x FFT

Purpose Decimation-in-frequency forward FFT of complex input vector

Library C64x DSP Library — Transforms

Description The C64x FFT block computes the decimation-in-frequency forward
FFT, with scaling between stages, of each channel of a complex input
signal. The input length of each channel must be both a power of
two and in the range 8 to 16,384, inclusive. The input must also be
in natural (linear) order. The output of this block is a complex signal
in natural order. Inputs and outputs are all signed 16-bit fixed-point
data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 2^k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. Therefore, in
order to ensure that the gain of the block matches that of the theoretical
FFT, the FFT block offsets the location of the binary point of the output
data type by (S-1) bits to the right relative to the location of the binary
point of the input data type. That is, the number of fractional bits of
the output data type equals the number of fractional bits of the input
data type minus (S-1).

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

6-178

C64x FFT

Dialog
Box

Algorithm In simulation, the FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

6-179

C64x General Real FIR

Purpose Filter real input signal using real FIR filter

Library C64x DSP Library — Filtering

Description The C64x General Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.
Signal X must contain at least four samples per channel and the
number of samples must be an integer multiple of four.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. All inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and
supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the Coefficients
(H) parameter in the dialog box

6-180

C64x General Real FIR

• Input port — Accept the coefficients from port H. This port must
have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_gen.
During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C64x Complex FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

6-181

C64x LMS Adaptive FIR

Purpose LMS adaptive FIR filtering

Library C64x DSP Library — Filtering

Description The C64x LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

The following constraints apply to the inputs and outputs of this block:

• The scalar input must be a Q.15 data type.

• The scalar input must be a Q.15 data type.

• The scalar output is a Q1.30 data type.

• The output has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive integer
that is a multiple of four.

This block performs LMS adaptive filtering according to the equations

and

where

• designates the time step.

• is a vector composed of the current and last scalar inputs.

• is the desired signal. The output converges to as the filter
converges.

• is a vector composed of the current set of filter taps.

• is the error, or .

• is the step size.

6-182

C64x LMS Adaptive FIR

For this block, the input and the output are defined by

which combined with the first two equations, result in the following
equations that this block follows:

and must be produced externally to the LMS Adaptive FIR block.
See “Examples” on page 6-184 below for a sample model where this
is done.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. All
intermediate products have s32Q30 data type. The update equation is
as follows:

H H B X

R X H
i i i

i i
N

= + ×

= ×∑
S16Q15 S32Q30 S32Q30(() ())

()

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm, so
comparison to the leakage factor of the LMS block of the Signal
Processing Blockset is not appropriate.

6-183

C64x LMS Adaptive FIR

Dialog
Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive integer that is also a multiple of four.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If selected, the filter taps are produced as output H. If not
selected, H is suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_firlms2.
During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.

6-184

C64x LMS Adaptive FIR

The portion of the model enclosed by the dashed line produces the
signal and feeds it back into the LMS Adaptive FIR block. The inputs
to this region are and the desired signal , and the output of this
region is the vector of filter taps . Thus this region of the model acts
as a canonical LMS adaptive filter. For example, compare this region to
the adaptfilt.lms function in Filter Design Toolbox. adaptfilt.lms
performs canonical LMS adaptive filtering and has the same inputs and
output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input in
some way similar to the one shown here. You must also provide the
signals and . This model simulates the desired signal by feeding

into a digital filter block. You can simulate your desired signal in a
similar way, or you may bring in from the workspace with a From
Workspace or codec block.

6-185

C64x Matrix Multiply

Purpose Matrix multiply two input signals

Library C64x DSP Library — Math and Matrices

Description The C64x Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits. You
can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B
Accumulator
Value

Total Bits 16 16 32

Fractional
Bits

R S R + S

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see “Examples” on page 6-188 below). You can either
require the output to have the same number of fractional bits as one of
the two inputs, or you can specify the number of output fractional bits
in the Number of fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

6-186

C64x Matrix Multiply

Dialog
Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

• Match input A — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

• Match input B — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

• Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value.

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

• User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

6-187

C64x Matrix Multiply

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Examples Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of
acc.

Q1.14 b31:b16

Match high bits of
prod.

Q.15 b30:b15

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional bits.
The following table shows the resulting data type and accumulator bits
used for the output signal for different settings of the Set fractional
bits in output to parameter.

6-188

C64x Matrix Multiply

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of
acc.

Q23.-8 b31:b16

Match high bits of
prod.

Q22.-7 b30:b15

See Also C64x Vector Multiply

6-189

C64x Matrix Transpose

Purpose Matrix transpose input signal

Library C64x DSP Library — Math and Matrices

Description The C64x Matrix Transpose block transposes an input matrix or vector.
A 1-D input is treated as a column vector and transposed to a row
vector. Input and output signals are any real, 16-bit, signed fixed-point
data type. Both the number of rows and the number of columns must
be multiples of four.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

6-190

C64x Radix-2 FFT

Purpose Radix-2 decimation-in-frequency forward FFT of complex input vector

Library C64x DSP Library — Transforms

Description The C64x Radix-2 FFT block computes the radix-2
decimation-in-frequency forward FFT of each channel of a
complex input signal. The input length of each channel must be both a
power of two and in the range 16 to 32,768, inclusive. The input must
also be in natural (linear) order. The output of this block is a complex
signal in bit-reversed order. Inputs and outputs are signed 16-bit
fixed-point data types, and the output data type matches the input
data type.

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example
shows you how to use the C64x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

6-191

C64x Radix-2 FFT

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block
output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 IFFT

6-192

C64x Radix-2 IFFT

Purpose Radix-2 inverse FFT of complex input vector

Library C64x DSP Library — Transforms

Description The C64x Radix-2 IFFT block computes the radix-2 inverse FFT
of each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=2^k. In order to ensure that the gain of the block matches that of
the theoretical IFFT, the Radix-2 IFFT block offsets the location of the
binary point of the output data type by k bits to the left relative to the
location of the binary point of the input data type. That is, the number
of fractional bits of the output data type equals the number of fractional
bits of the input data type plus k.

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

6-193

C64x Radix-2 IFFT

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 FFT

6-194

C64x Radix-4 Real FIR

Purpose Filter real input signal using real FIR filter

Library C64x DSP Library — Filtering

Description The C64x Radix-4 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
filter coefficients must be a multiple of four and must be at least eight.
The coefficients must also be in reversed order {b(n), b(n-1),...,(b(0)}. All
inputs, coefficients, and outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

6-195

C64x Radix-4 Real FIR

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. Enter the n coefficients in
reversed order — b(n), b(n-1),...,(b(0). This parameter is tunable
in simulation.

Initial conditions
If the initial conditions are

• All the same, enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

6-196

C64x Radix-8 Real FIR

Purpose Filter real input signal using real FIR filter

Library C64x DSP Library — Filtering

Description The C64x Radix-8 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
coefficients must be an integer multiple of eight. The coefficients must
be in reversed order — {b(n), b(n-1),...,(b(0)}. All inputs, coefficients, and
outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

6-197

C64x Radix-8 Real FIR

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format, entering them in
reversed order — b(n), b(n-1),...,(b(0). This parameter is visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Symmetric Real FIR

6-198

C64x Real Forward Lattice All-Pole IIR

Purpose Filter real input signal using lattice IIR filter

Library C64x DSP Library — Filtering

Description The C64x Real Forward Lattice All-Pole IIR block filters a real input
signal using an autoregressive forward lattice filter. The input and
output signals must be the same 16-bit signed fixed-point data type.
The reflection coefficients must be real and Q.15. The number of
reflection coefficients must be greater than or equal to ten; they must
be even; and they must be in reversed order — k(n), k(n-1),..., k(0).
Using an even number of reflection coefficients maximizes the speed of
your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog box

6-199

C64x Real Forward Lattice All-Pole IIR

• Input port — Accept the coefficients from port K

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to ten
and be even. Enter the coefficients in reverse order from k(n) to
k(0). Using an even number of reflection coefficients maximizes
the speed of your generated code. This parameter is visible when
you select Specify via dialog for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

Algorithm In simulation, the Real Forward Lattice All-Pole IIR block is equivalent
to the TMS320C64x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

See Also C64x Real IIR

6-200

C64x Real IIR

Purpose Filter real input signal using IIR filter

Library C64x DSP Library — Filtering

Description The C64x Real IIR block filters a real input signal X using a real
autoregressive moving-average (ARMA) IIR Filter. This filter is
implemented using a direct form I structure. You must use at least
eight input samples.

There must be five AR coefficients and five MA coefficients. The first
AR coefficient is always assumed to be one. Inputs, coefficients, and
output are Q.15 data types.

The Real IIR block supports discrete sample times and supports
little-endian code generation only.

Dialog
Box

6-201

C64x Real IIR

Coefficient sources
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog box

• Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR
coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all input
state initial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

6-202

C64x Real IIR

• Different across channels, enter a matrix containing all output
state initial conditions. This matrix must have four rows.

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C64x Real Forward Lattice All-Pole IIR

6-203

C64x Reciprocal

Purpose Fraction and exponent of reciprocal of real input signal

Library C64x DSP Library — Math and Matrices

Description The C64x Reciprocal block computes the fractional (F) and exponential
(E) portions of the reciprocal of a real Q.15 input, such that the
reciprocal of the input is F*(2E). The fraction is Q.15 and the exponent
is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

6-204

C64x Symmetric Real FIR

Purpose Filter real input signal using FIR filter

Library C64x DSP Library — Filtering

Description The C64x Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. Thus you must use an odd number of
coefficients. The number of coefficients must be of the form 16k + 1,
where k is a positive integer. This block wraps overflows that occur. The
input, coefficients, and output are 16-bit signed fixed-point data types.

Intermediate multiplys and accumulates performed by this filter result
in 32-bit accumulator values. However, the Symmetric Real FIR block
only outputs 16 bits. You can choose to output 16 bits of the accumulator
value in one of the following ways.

Match input x Output 16 bits of the accumulator value
such that the output has the same number
of fractional bits as the input

Match coefficients
h

Output 16 bits of the accumulator value
such that the output has the same number
of fractional bits as the coefficients

Match high 16 bits
of acc.

Output bits 31 - 16 of the accumulator value

Match high 16 bits
of prod.

Output bits 30 - 15 of the accumulator value

User-defined Output 16 bits of the accumulator value such
that the output has the number of fractional
bits specified in the Number of fractional
bits in output parameter

6-205

C64x Symmetric Real FIR

The Symmetric Real FIR block supports discrete sample times and
only little-endian code generation.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

• Input port — Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. Coefficients must be
symmetric about the middle element of the vector, so the number

6-206

C64x Symmetric Real FIR

of coefficients must be odd. This parameter is visible when
Specify via dialog is specified for the Coefficient source
parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

• Match input X — Sets the coefficients to have the same
number of fractional bits as the input

• Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

• User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

• Match input X — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

• Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in
the output to match the number of fractional bits in coefficients
H

6-207

C64x Symmetric Real FIR

• Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

• User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 6-188 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

6-208

C64x Symmetric Real FIR

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Radix-8 Real FIR

6-209

C64x Vector Dot Product

Purpose Vector dot product of real input signals

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Dot Product block computes the vector dot product
of two real input vectors, X and Y. The input vectors must have the
same dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be a multiple of four.
The output is a signed 32-bit fixed-point scalar on each channel, and
the number of fractional bits of the output is equal to the sum of the
number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

6-210

C64x Vector Maximum Index

Purpose Zero-based index of maximum value element in each input signal
channel

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Maximum Index block computes the zero-based index
of the maximum value element in each channel (vector) of the input
signal. The input may be any real, 16-bit, signed fixed-point data type.
The number of samples per input channel must be an integer multiple
of 16 and at least 48. The output data type is 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

6-211

C64x Vector Maximum Value

Purpose Maximum value for each input signal channel

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Maximum Value block returns the maximum value in
each channel (vector) of the input signal. The input can be any real,
16-bit, signed fixed-point data type. The number of samples on each
input channel must be an integer multiple of 8 and must be at least 32.
The output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

See Also C64x Vector Minimum Value

6-212

C64x Vector Minimum Value

Purpose Minimum value for each input signal channel

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Minimum Value block returns the minimum value in
each channel of the input signal. The input may be any real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of 4 and must be at least 20. The
output data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

See Also C64x Vector Maximum Value

6-213

C64x Vector Multiply

Purpose Element-wise multiplication on inputs

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Multiply block performs element-wise 32-bit
multiplication of two inputs X and Y. The total number of elements in
each input must be a multiple or 8 and at least 16, and the inputs must
have matching dimensions. The upper 32 bits of the 64-bit accumulator
result are returned. All input and output elements are 32-bit signed
fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

See Also C64x Matrix Multiply

6-214

C64x Vector Negate

Purpose Negate each input signal element

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be a multiple of four, and at least eight. For complex signals, the
number of input elements must be at least two. The output is the same
data type as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

6-215

C64x Vector Sum of Squares

Purpose Sum of squares over each real input channel

Library C64x DSP Library — Math and Matrices

Description The C64x Vector Sum of Squares block computes the sum of squares
over each channel of a real input. The number of samples per input
channel must be divisible by 4; equal to or greater than 8; and the input
must be a 16-bit signed fixed-point data type. The output is a 32-bit
signed fixed-point scalar on each channel. The number of fractional bits
of the output is twice the number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

6-216

C64x Weighted Vector Sum

Purpose Weighted sum of input vectors

Library C64x DSP Library — Math and Matrices

Description The C64x Weighted Vector Sum block computes the weighted sum of
two inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of eight. Inputs, weights, and output are Q.15 data types, and
weights must be in the range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Weight source
Specify the source of the weights:

• Specify via dialog — Enter the weights in the Weights (W)
parameter in the dialog box

• Input port — Accept the weights from port W

Weights (W)
This parameter is visible only when Specify via dialog is
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

6-217

C64x Weighted Vector Sum

• All the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix must
be equal to the number of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

6-218

C6713DSK

Purpose Configure model for C6713 DSP Starter Kit

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your C6713 DSP Starter Kit target. Adding this block to your Simulink
model provides access to the processor hardware settings you need to
configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the C6713 DSK must include this block,
or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present
in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-219

C6713DSK

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the C6713 DSK
from a subsystem, the subsystem model must include a C6713DSK
target preferences block.

Dialog
Box

6-220

C6713DSK

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. Board type for this block is set to
C6713 DSK by default.

Processor
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not

6-221

C6713DSK

match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

6-222

C6713DSK

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for code generated from this model.

Operating System
Specify the operating system of the target.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

6-223

C6713DSK

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default if required.
Add more as you require by entering the full path to the library
with the library file in the text area. No additional libraries
appear here in the default configuration.

• Initialize functions — If your project requires an initialize
function, enter it here. By default, this is empty.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-224

C6713DSK

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Heap — specifies whether you use a heap and determines the size
in words

• L2 Cache — enables the L2 cache (where available) and sets the
size in kB

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

6-225

C6713DSK

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. C6713 DSK
boards provide IRAM and SDRAM memory segments by default

Name
When you highlight an entry on the Physical memory list,
the name of the entry appears here. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

6-226

C6713DSK

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — allow code to be stored in the memory segment in
Name.

• Data — allow data to be stored in the memory segment in
Name.

• Code and Data — allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

6-227

C6713DSK

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
Selecting this option enables creating the heap, and enables the
Heap size option.

Using this option you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

6-228

C6713DSK

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Enabled by selecting Define label, you use this option to provide
the label for the heap. Any combination of characters is accepted
for the label, except reserved characters in C/C++ compilers.

Cache Level
C6713 processors support an L2 cache memory structure that you
can configure as SRAM and partial cache.

Configuration
Specify the configuration of the cacheSelect the size of the cache
from the list.

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

6-229

C6713DSK

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

6-230

C6713DSK

String
Section
List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

6-231

C6713DSK

String
Section
List Description of the Section Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Compiler Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

6-232

C6713DSK

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. For C6713
DSK targets, the list include IRAM and SDRAM segments.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS
sections lists, you add the new sections to this list. Initially, the
Custom sections list contains no fixed entries, just a placeholder
for a section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new

6-233

C6713DSK

name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

6-234

C6713DSK

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options

6-235

C6713DSK

specify the stack use and locations on the stack for static and dynamic
tasks.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

Data object placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the Data object
placement list. All DSP/BIOS objects use the same memory
segment. You cannot select the location for individual objects.

Code object placement
Distinct from the entries on the DSP/BIOS sections list. Specify
placement of code objects.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks

6-236

C6713DSK

do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers options SDRAM and IRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

See Also Custom C6000

6-237

C6713 DSK ADC

Purpose Digitized signal output from codec to processor

Library C6713 DSK Board Support in Target for TI C6000

Description Use the C6713 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from external sources, such as signal
generators, frequency generators or audio devices. Placing an C6713
DSK ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the C6713 DSK to convert an analog
input signal to a digital signal for the digital signal processor.

Most of the configuration options in the block affect the codec. However,
the Output data type, Samples per frame and Scaling options are
related to the model you are using in Simulink, the signal processor
on the board, or direct memory access (DMA) on the board. In the
following table, you find each option listed with the C6713 DSK
hardware affected.

Option Affected Hardware

ADC source Codec

Mic Codec

Output data
type

TMS320C6713 digital signal processor

Samples per
frame

Direct memory access functions

Scaling TMS320C6713 digital signal processor

Source gain
(dB)

Codec

You can select one of three input sources from the ADC source list:

• Line In — the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

6-238

C6713 DSK ADC

• Mic — the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

• Loopback — routes the analog signal from the codec output back to
the codec input. Can be useful in some feedback applications.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink,
the block puts monaural data into an N-element column vector. Stereo
data input forms an N-by-2 matrix with N data values and two stereo
channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

Source gain (dB) lets you add gain to the input signal before the
A/D conversion. When you select Loopback as the ADC source, your
specified source gain is not added to the input signal. Select the
appropriate gain from the list.

6-239

C6713 DSK ADC

Dialog
Box

ADC source
The input source to the codec. Line In is the default setting.
Selecting Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the

6-240

C6713 DSK ADC

check box when you input monaural data. By default, stereo
operation is enabled.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer.

Scaling
Selects whether the codec data is unmodified, or normalized to the
output range to ±1.0, based on the codec data format. Select either
Normalize or Integer Value. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. 64 samples per frame is the
default setting. Notice that the frame rate depends on the sample
rate and frame size. For example, if your input is 8kHz samples
per second, and you select 64 samples per frame, the frame rate is
125 frames every second. The throughput remains the same at
64 samples per second.

See Also C6713 DSK DAC

6-241

C6713 DSK DAC

Purpose Configure codec to convert digital input to analog output

Library C6713 DSK Board Support in Target for TI C6000

Description Adding the C6713 DSK DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the
analog output jack on the C6713 DSK. When you add the C6713 DSK
DAC block, the digital signal received by the codec is converted to
an analog signal. After converting the digital signal to analog form
(digital-to-analog (D/A) conversion), the codec sends the signal to the
output jack.

One of the configuration options in the block affects the codec. The
remaining options relate to the model you are using in Simulink and
the signal processor on the board. In the following table, you find each
option listed with the C6713 DSK hardware affected by your selection.

Option Affected Hardware

Overflow mode TMS320C6713 Digital Signal Processor

Scaling TMS320C6713 Digital Signal Processor

Word length Codec

6-242

C6713 DSK DAC

Dialog
Box

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog
correctly. The default value is 16 bits, with options of 20, 24, and
32 bits. Select the word length to match the ADC setting.

Scaling
Selects whether the input to the codec represents unmodified data,
or data that has been normalized to the range ±1.0. Matching the
setting for the C6713 DSK ADC block is appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap
or Saturate options to apply to the result of an overflow in an
operation. Saturation is the less efficient operating mode if
efficiency is important to your development.

See Also C6713 DSK ADC

6-243

C6713 DSK DIP Switch

Purpose Simulate or read DIP switches

Library C6713 DSK Board Support in Target for TI C6000

Description Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6713 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6713 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

Selected Selected Cleared Cleared 0011 3

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

6-244

C6713 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6713
DSK (Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting — the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown above. Your process uses the result in the same
way whether in simulation or in code generation. In code generation
and when running your application, the block code ignores the settings
for Switch 0, Switch 1, Switch 2 and Switch 3 in favor of reading
the hardware switch settings. When the block reads the DIP switches,
it reports the results as either a Boolean string or an integer value
as the table below shows.

6-245

C6713 DSK DIP Switch

Output Values From The User DIP Switches on the C6713 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

6-246

C6713 DSK DIP Switch

Output Values From The User DIP Switches on the C6713 DSK
(Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off On On On 1110 14

On On On On 1111 15

Dialog
Box

Opening this dialog box causes a running simulation to pause. Refer to
“Changing Source Block Parameters During Simulation” in your online
Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

6-247

C6713 DSK DIP Switch

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values, either 0 or 1.

Each vector element represents the status of one DIP switch; the
first switch is switch Switch 0 and the fourth is switch Switch 3.
The data type Integer converts the logical string to an equivalent
unsigned 8-bit (uint8) value. For example, when the logical string
generated by the switches is 0101, the conversion yields 5 — the
LSB is 1 and the MSB is 0.

Sample time
Specifies the time between samples of the signal. The default is
1 second between samples, for a sample rate of one sample per
second (1/Sample time).

6-248

C6713 DSK LED

Purpose Control LEDs

Library C6713 DSK Board Support in Target for TI C6000

Description Adding the C6713 DSK LED block to your Simulink block diagram
lets you trigger all four of the user light emitting diodes (LED) on the
C6713 DSK. To use the block, send a nonzero real scalar to the block.
The C6713 DSK LED block controls all four user LEDs located on the
C6713 DSK.

When you add this block to a model, and send a real scalar to the block
input, the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

All LEDs maintain their state until they receive an input value that
changes the state. Enabled LEDs stay on until the block receives an
input value that turns the LEDs off; disabled LEDs stays off until
turned on. Resetting the C6713 DSK turns off all user LEDs. By
default, the LEDs are turned off when you start an application.

Dialog
Box

6-249

C6713 DSK LED

This dialog box does not have any user-selectable options.

6-250

C6713 DSK Reset

Purpose Reset to initial conditions

Library C6713 DSK Board Support in Target for TI C6000

Description Double-clicking this block in a Simulink model window resets the C6713
DSK that is running the executable code built from the model. When
you double-click the Reset block, the block runs the software reset
function provided by CCS that resets the processor on your C6713 DSK.
Applications running on the board stop and the signal processor returns
to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any block
in the model. When you double-click this block in the block library it
resets your C6713 DSK. In other words, anytime you double-click a
C6713 DSK Reset block you reset your C6713 DSK.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog box.

6-251

C6727PADK

Purpose Configure model for C6727 Professional Audio Development Kit

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your C6727 Professional Audio Development Kit (PADK) target. Adding
this block to your Simulink model provides access to the processor
hardware settings you need to configure when you generate code from
Real-Time Workshop to run on the target.

Any model that you target to the C6727 PADK must include this block,
or the Custom C6000 target preferences block. Real-Time Workshop
returns an error message if a target preferences block is not present
in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Also, C672x processors have a
fixed interrupt assignment scheme, using interrupt 4 and 5 for real-time
interrupts, whereas all other C6000 processors use interrupts 14 and 15.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

6-252

C6727PADK

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the C6727 PADK
from a subsystem, the subsystem model must include a C6727PADK
target preferences block.

6-253

C6727PADK

Dialog
Box

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

6-254

C6727PADK

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box:

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. If you are using one of the explicitly
supported boards, choose the target preferences block for that
board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not
match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

6-255

C6727PADK

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

6-256

C6727PADK

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory. The examples in the
following figure use the string.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

• Source files — Enter the full paths to source code files to use
with this target. The default is blank.

• Include paths — C6727 PADK requires some additional files
to work correctly. When you add this block to your model, the
default include paths appear as shown in the following figure.
These entries include chip support libraries, a BIOS addition,
and an RTDX library. All are necessary for use. You can add
further paths by typing the path into the text area.

6-257

C6727PADK

• Libraries — These entries identify specific libraries that the
target requires. They appear on the list by default, as shown
in the following figure.

• Initialize functions — C6727 PADK targets require a
specific initialization function, listed on the following figure as
PADK6727_init. Enter others if needed.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

6-258

C6727PADK

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From the
list of available boards, select the one to which you are targeting
your code.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-259

C6727PADK

The Memory pane contains memory options in three areas as shown in
the preceding figure:

• Physical Memory — specifies the processor and board memory map

• Cache Configuration — specifies the cache configuration

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

6-260

C6727PADK

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on C670x processors provide IPRAM and
IDRAM memory segments by default.

• C6713DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

6-261

C6727PADK

Note Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes (one word).

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

6-262

C6727PADK

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list. In
Name, change the temporary name NEWMEM1 by entering the new
segment name. Enter the new name or click Apply to update the
temporary name on the list to the name you want.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
If your processor supports using a heap, as does the C6713, for
example, selecting this option allows you to create the heap, and
enables the Heap size option. Create heap is not available on
processors that either do not provide a heap or do not allow you to
configure the heap.

Using this option, you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

6-263

C6727PADK

Note You cannot control the location of the heap in the memory
segment. The only way to control the location of the heap in a
segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap allows you to name the heap. Enter your
label for the heap in Heap Label.

Heap Label
You enable this option by selecting Define label. Use this option
to provide the label for the heap. Any combination of characters
is accepted for the label, except reserved characters in C/C++
compilers.

Cache Configuration

Cache Level
Select L1D, L1P, or L2 cache to specify the cache level.

Configuration
After selecting the cache level, use this list to determine the size
of the cache to be allotted..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in

6-264

C6727PADK

contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

Within the pane shown in this figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

6-265

C6727PADK

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

String Section List
Description of the Section
Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in
the code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your
program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/O buffer for C
programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables
section

.hwi DSP/BIOS Dispatch code for interrupt
service routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

6-266

C6727PADK

String Section List
Description of the Section
Contents

.pinit Compiler Load allocation of the table of
global object constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX
program modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in
the code containing the heap

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Compiler Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list, you find both initialized
sections (sections that contain data or executable code) and
uninitialized sections (sections that reserve space in memory).
The initialized sections are:

• .cinit

6-267

C6727PADK

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory

6-268

C6727PADK

segments to allocate the highlighted compiler section to the
segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list, you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

DSP/BIOS Object Placement
These objects are distinct from the entries on the DSP/BIOS
sections list. DSP/BIOS objects, such as STS or LOG, are placed
in the memory segment you select from the DSP/BIOS Object
Placement list. All DSP/BIOS objects use the same memory
segment. You cannot select the location for individual objects.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, but instead a placeholder
for a section for you to define.

Name
You enter the name for your new section in this field. To add a
new section, click Add. Then replace the temporary name with
the name you want to use. Although the temporary name includes

6-269

C6727PADK

a period at the beginning you do not need to include the period in
your new name. Names are case sensitive. NewSection is not the
same as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter a new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

6-270

C6727PADK

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

In the pane shown in this figure, you configure the options for DSP/BIOS
tasks, such as the task manager and scheduler configuration. The

6-271

C6727PADK

Sections pane includes DSP/BIOS configuration options as well. The
options specify the stack use and locations on the stack for static and
dynamic tasks.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. A value 4096 bytes is the default. You can set any size up
to the limits for the processor. Set the stack size so that tasks do
not use more memory than you allocate. While any task can use
more memory than the stack includes, failure to set the stack size
might cause the task to write into other memory or data areas,
possibly causing unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. However, infrequently used tasks
usually work best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

See Also Custom C6000

6-272

CPU Timer

Purpose Select timer and configure periodic interrupt

Library C6000 DSP Core Support Library in Target for TI C6000

Description Use this block in a model to select the CPU timer on your board and
specify a periodic interrupt. While the list provides two timers, 0 and 1,
some boards offer either fewer or more timers. For example, the DM642
provides three timers.

CPU timer does not have input or output ports. Adding the block to your
model serves to configure periodic interrupts in the generated code.

Dialog
Box

Timer no.
Select the timer to use from the list. Be sure your target offers a
timer with the timer number you choose. Timer 0 is selected by
default.

Timer period
Set the timer interrupt period in terms of CPU clock cycles. Use
this block to configure the selected CPU timer to generate a
periodic interrupt.

6-273

CPU Timer

Enter the timer period in clock cycles, either as an integer,
fraction, decimal, or a variable in your workspace. 0 is the default
value.

For example, to generate a periodic timer interrupt every second
when the CPU clock operates at 720MHz, set Timer period to
720e6 clock cycles.

See Also Hardware Interrupt, Idle Task

6-274

Custom C6000

Purpose Configure model for C6000-processor-based custom hardware targets

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your custom C6000 processor-based target. Adding this block to your
Simulink model provides access to the processor hardware settings you
need to configure when you generate code from Real-Time Workshop
to run on the target.

Any model that you target to custom hardware must include this block
or the target preferences block that best matches your processor, such
as the C6416DSK target preferences block to target custom hardware
based on the C6416 processor. Real-Time Workshop returns an error
message if a target preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model. Simulink returns an error
when your model does not include a target preferences block or has
more than one.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

6-275

Custom C6000

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot
make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from
a selected subsystem in a model. To generate code for a custom
C6000-based target from a subsystem, the subsystem model must
include a Custom C6000 target preferences block.

6-276

Custom C6000

Dialog
Box

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

6-277

Custom C6000

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. If you are using one of the explicitly
supported boards, choose the target preferences block for that
board and this field shows the proper board type.

Device
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not
match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

6-278

Custom C6000

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

6-279

Custom C6000

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory.

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default if required.
Add more as you require by entering the full path to the library
with the library file in the text area. No additional libraries
appear here in the default configuration.

6-280

Custom C6000

• Initialize functions — If your project requires an initialize
function, enter it here. By default, this is empty.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-281

Custom C6000

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Heap — specifies whether you use a heap and determines the size
in words

• L2 Cache — enables the L2 cache (where available) and sets the
size in kB

6-282

Custom C6000

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on C670x processors provide IPRAM and
IDRAM memory segments by default.

• C6713DSK boards provide SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list,
the name of the entry appears here. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

6-283

Custom C6000

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — allow code to be stored in the memory segment in
Name.

6-284

Custom C6000

• Data — allow data to be stored in the memory segment in
Name.

• Code and Data — allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
If your processor supports using a heap, as does the C6713, for
example, selecting this option enables creating the heap, and
enables the Heap size option. Create heap is not available on
processors that either do not provide a heap or do not allow you to
configure the heap.

Using this option you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in

6-285

Custom C6000

a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Enabled by selecting Define label, you use this option to provide
the label for the heap. Any combination of characters is accepted
for the label, except reserved characters in C/C++ compilers.

Enable L2 Cache
C621x, C671x, and C641x processors support an L2 cache memory
structure that you can configure as SRAM and partial cache.
Both the data memory and the program share this second-level
memory. C620x DSPs do not support L2 cache memory and
this option is not available when you choose one of the C620x
processors as your target.

If your processor supports the two-level memory scheme, this
option enables the L2 cache on the processor.

L2 Cache size
When you enable the L2 cache, use this list to determine the size
of the cache allotted. Select the size of the cache from the list.

6-286

Custom C6000

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

6-287

Custom C6000

Within this pane, you configure the allocation of sections for Compiler,
DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

6-288

Custom C6000

String Section List
Description of the Section
Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the
code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

6-289

Custom C6000

String Section List
Description of the Section
Contents

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in the
code containing the heap

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Compiler Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

6-290

Custom C6000

• .far

• .stack

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized

6-291

Custom C6000

(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected
DSP/BIOS sections list entry.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

DSP/BIOS Object Placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the DSP/BIOS
Object Placement list. All DSP/BIOS objects use the same
memory segment. You cannot select the location for individual
objects.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, just a placeholder for a
section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions

6-292

Custom C6000

imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

6-293

Custom C6000

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options
specify the stack use and locations on the stack for static and dynamic
tasks.

6-294

Custom C6000

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks
do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers IDRAM for locating the stack in memory. The
Memory pane provide more options for the physical memory on
the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, MEM_NULL is the only valid stack location in memory.

6-295

DM642EVM

Purpose Configure model for DM642 Evaluation Module

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your DM642 Evaluation Module target. Adding this block to your
Simulink model provides access to the processor hardware settings to
configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the DM642 evaluation module must
include this block, or the Custom C6000 target preferences block.
Real-Time Workshop returns an error message if a target preferences
block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-296

DM642EVM

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the DM642 EVM
from a subsystem, the subsystem model must include a DM642EVM
target preferences block.

Dialog
Box

6-297

DM642EVM

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. By default, the DM642EVM block
specifies the DM642EVM for the board type.

Processor
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not

6-298

DM642EVM

match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

6-299

DM642EVM

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Operating System
Specify the operating system for the target.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory. The examples in the
following figure use the string.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

6-300

DM642EVM

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default.

• Initialize functions — DM642 EVM targets require a
specific initialization function, listed here as EVMDM642_init.
Enter others if needed.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

6-301

DM642EVM

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-302

DM642EVM

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Heap — specifies whether you use a heap and determines the size
in words

• L2 Cache — enables the L2 cache (where available) and sets the
size in kB

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

6-303

DM642EVM

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments. DM642EVM boards provide ISRAM
and SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list,
the name of the entry appears here. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

6-304

DM642EVM

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — allow code to be stored in the memory segment in
Name.

• Data — allow data to be stored in the memory segment in
Name.

• Code and Data — allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

6-305

DM642EVM

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
Selecting this option enables creating the heap, and enables the
Heap size option.

Using this option you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

6-306

DM642EVM

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Enabled by selecting Define label, you use this option to provide
the label for the heap. Any combination of characters is accepted
for the label, except reserved characters in C/C++ compilers.

Cache Level
Specify the cache level to use.

Configuration
Specify the memory configuration for the cache..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

6-307

DM642EVM

Within this pane and the DSP/BIOS pane, you configure the allocation
of sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

6-308

DM642EVM

String
Section
List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

6-309

DM642EVM

String
Section
List Description of the Section Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Default Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

6-310

DM642EVM

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Section Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains ISRAM and SDRAM when you use this block.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, just a placeholder for a
section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new

6-311

DM642EVM

name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

6-312

DM642EVM

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options

6-313

DM642EVM

specify the stack use and locations on the stack for static and dynamic
tasks.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Briefly explains the contents of the DSP/BIOS sections list
entries.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

Data object placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the Data Object
Placement list. All DSP/BIOS objects use the same memory
segment. You cannot select the location for individual objects.

Code object placement
Distinct from the entries on the DSP/BIOS sections list,
specifies the location of code objects.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks

6-314

DM642EVM

do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

6-315

DM642 EVM Audio ADC

Purpose Audio codec and peripherals

Library DM642 EVM Board Support Library in Target for TI C6000

Description Use the DM642 EVM ADC (analog-to-digital converter) block to capture
and digitize analog audio signals from external sources, such as signal
generators, frequency generators, or audio devices. Placing a DM642
EVM ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the DM642 EVM to convert an analog
input signal to a digital signal for the digital signal processor.

ADC blocks output int16 data independent of the data type you provide
as input to the block.

Most of the configuration options in the block affect the codec. However,
the Samples per frame and Scaling options are related to the model
you are using in Simulink, the signal processor on the board, or direct
memory access (DMA) on the board. In the following table, you find
each option listed with the DM642 EVM hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Sample rate (Hz) Codec

Samples per frame Direct memory access functions

Stereo Codec

You can select one of two input sources from the ADC source list:

• Line In — the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

• Mic in — the codec accepts input from the microphone connector
(MIC IN) on the board mounting bracket.

6-316

DM642 EVM Audio ADC

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels.

You must set the sample rate for the block. From Sample rate (Hz),
select the sample rate for your model. Sample rate (Hz) specifies the
number of times each second that the codec samples the input signal.
Sample rates range from 8 kHz to 96 kHz, in preset rates. You must
select from the list; you cannot enter a sample rate that is not on the list.

Dialog
Box

ADC source
The input source to the codec. Line In is the default.

6-317

DM642 EVM Audio ADC

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
The number of channels input to the A/D converter. Clearing this
option selects the left channel; selecting this option selects both
left and right input channels. To configure the DM642 EVM board
for monaural operation, clear the Stereo check box. When you
first open the dialog box, Stereo is selected. The default is stereo
operation.

Sample rate (Hz)
Sampling rate of the A/D converter. Available sample rates are
set by the codec. Default rate is 8 kHz. Options range up to 96
kHz. Select the sample rate from the list.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal buffered
internally by the block before it sends the digitized signals, as
a frame vector, to the next block in the model. 64 samples per
frame is the default setting. Notice that the frame rate depends
on the sample rate and frame size. For example, if your input
is 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput
remains the same at 32 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the model
base rate/Simulink base rate as determined in the Solver options
in Configuration Parameters. Selecting Inherit sample time
directs the block to use the specified rate in model configuration.
You must select this option to use the block in a function
subsystem with the asynchronous scheduler.

See Also DM642 EVM Audio DAC

6-318

DM642 EVM Audio DAC

Purpose Configure codec to convert digital audio input to analog audio output

Library DM642 EVM Board Support Library in Target for TI C6000

Description Adding the DM642 EVM DAC (digital-to-analog converter) block to your
Simulink model provides the means to output an analog signal to the
LINE OUT connection on the DM642 EVM mounting bracket. When
you add the DM642 EVM DAC block, the digital signal received by
the codec is converted to an analog signal. After converting the digital
signal to analog form (digital-to-analog conversion), the codec sends
the signal to the output audio jack.

The DAC data word length is 16 bits. The block converts all input data
to int16 before it writes the data out to the DAC output buffer.

With an integer data word length of 16 bits, any data value above
215–1 or below -215 wraps back into the representable range of values
between -215 to 215–1. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type. For more
information about wrapping, refer to “Modulo Arithmetic”. Note that
saturate arithmetic is not available. For example,

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0
or 4.49 down to 4.0.

Setting the sample rate configures the codec sampling rate for the
analog output data stream. The rates range from 8000 Hz, similar to
plain old telephone service quality, to 48 kHz (CD quality audio) to
96 kHz.

6-319

DM642 EVM Audio DAC

Dialog
Box

Sample rate (Hz)
Sampling rate of the D/A converter. Available output sample
rates are set by the codec. Default rate is 8000 Hz (8 kHz) and
the maximum rate is 96000 Hz (96 kHz). Choose the appropriate
rate from the list.

See Also DM642 EVM Audio ADC

6-320

DM642 EVM FPGA GPIO Read

Purpose User GPIO registers to read from selected pins

Library DM642 EVM Board Support Library in Target for TI C6000

Description Added to your model, this block reads logical values from the GPIO
registers you select in the dialog box and sends the data out to
downstream blocks as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same I/O
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you read register 1 with the read block you cannot write to register 1
with the write block. This applies to all eight registers.

6-321

DM642 EVM FPGA GPIO Read

Dialog
Box

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit 0
is register 0, bit7 is register 7. Select the bits that represent the
registers to read. Note that the read and write functions cannot
share the same registers. If you select a register to read, you
cannot write to that register.

Sample time
Time in seconds between consecutive inputs to the registers. Enter
any real positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Write

6-322

DM642 EVM FPGA GPIO Write

Purpose Write to GPIO registers

Library DM642 EVM Board Support Library in Target for TI C6000

Description Added to your model, this block writes logical values to the GPIO
registers you select in the dialog box, reading the data from an upstream
block as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same I/O
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you write register 1 with the write block you cannot read from register 1
with the read block. This applies to all eight registers.

Dialog
Box

6-323

DM642 EVM FPGA GPIO Write

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit 0
is register 0, bit7 is register 7. Select the bits that represent the
registers to write. Note that the read and write functions cannot
share the same registers. When you select a register to write to,
you cannot read that register.

Sample time
Time in seconds between consecutive inputs to the registers. Enter
any real positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Read

6-324

DM642 EVM Video ADC

Purpose Video decoders to capture analog video

Library DM642 EVM Board Support Library in Target for TI C6000

Description

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture analog video data from the video input ports on the DM642
EVM.

2 Convert the input to a format and mode you define in the block.

3 Output the converted digital video for further downstream processing.

Adding two of these blocks to a model lets you capture two separate
video data streams and prepare them for display simultaneously, such
as in picture-in-picture mode.

The block captures and buffers one frame (two fields for NTSC standard)
of analog input video from the input ports, converts the buffered video
to the specified format, and then outputs the converted video frame as
8-bit unsigned integer data for further processing.

Input to the DM642 EVM must be analog National Television Standards
Committee (NTSC) video format. The block captures and processes
data in frames, not fields.

To configure the format for the output video, the block offers output
format options that control how the block handles color data. The block
also offers a sample time option to let you set the frame rate for video
output from the block.

6-325

DM642 EVM Video ADC

Note This block does not provide output video for display. Use the
DM642 EVM Video DAC to generate video data to output to the
board video output connectors. The DM642EVM board provides both
composite and S-video connectors for output. However, these are driven
simultaneously, so you do not need to specify which one is to be used.

When you add this block to a Simulink model, it has no affect in your
simulation — it outputs a string of zeros. Generating code from a model
that includes this block produces the code needed for capturing data on
your evaluation module by adding

• Video device configuration code for the chosen mode

• Code used to copy the run time buffer

To use video in a Simulink model, use one of the available video source
blocks to introduce video data to your model.

Options for the block let you configure the digital video format and
video mode for the data output by the block.

NTSC TV systems use interlaced scanning to create TV frames from
fields. The even and odd TV lines are separated into even and odd fields
that combine to make a complete TV frame image. For output, the block
always provides complete frames, consisting of two fields, which are
available at any instant. When the sample time you specify for the
block is different from the NTSC frame rate of 30Hz, you may encounter
visible anomalies in the video stream from the block.

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the DM642 Target

6-326

DM642 EVM Video ADC

Preferences block or setting your own values. Target for TI C6000
returns an error.

Use Create heap and Heap size and set the heap size in the
DM642EVM Target Preferences block to configure the heap. Select
Define label and name the heap EXTERNALHEAP in Heap label.

The default settings for the target preferences create a heap with
sufficient memory to handle the worst case memory allocation needs
automatically. If you configure the heap without sufficient memory,
you get a run-time error because the system cannot initialize the video
driver.

Notes About Converting NTSC Video Input From YCbCr to
RGB24

When you choose to convert your NTSC YCbCr-defined video input
to RGB24 (8:8:8 RGB) for output from the block, the block performs
an intermediate conversion step that follows a standard process for
conversion (as described by Graphical Device Interface (GDI) color space
conversions documentation from the International Color Consortium
(ICC)).

First, the block converts your YCbCr input signal to 5:6:5 RGB format
where the red and blue channels of the source use a 5-bit representation
and the green channel uses 6 bits.

Now the block converts your 5:6:5 RGB to 8:8:8 RGB using the following
conventions:

1 For the red and blue 5-bit channels, it copies the three most
significant bits (MSB) from the 5-bit source word and append them to
the lower order end of the target word.

2 For the green 6-bit channel, it copies the two MSBs from the green
source word and append them to the lower order end of the target
green word.

The results is to output three RGB channels — red, green, and blue
— each with 8-bit words.

6-327

DM642 EVM Video ADC

For example, to convert hexadecimal values by this algorithm, 5:5:5
RGB data of (0x19, 0x33, 0x1A) becomes (0xCE, 0xCF, 0xD6) of 8:8:8
RGB output.

To do the conversion in the binary case for 5:5:5 RGB data:

1 blue data 1 1101 converts to 11101111

2 for the green channel, conversion takes 11 0011 to 1100 1111

3 red data 1 0101 becomes 1010 1101 (same algorithm as blue data)

To maximize the speed of the RGB conversion, the Video ADC block
provides color space conversion using a routine written in assembly
language and optimized for the DM64x processor core. Using the
optimized color space conversion code replaces the Color Space
Conversion block available from the Video and Image Processing (VIP)
Blockset. While you can use any compatible VIP blockset block with the
DM642, this particular color space conversion operation is handled
better by the conversion code included in the ADC block.

6-328

DM642 EVM Video ADC

Dialog
Box

Decoder type
Configures the block options to support either the TVP5146
Decoder on the DM642 EVM or the SAA7115 Decoder, depending
on the model of your board. Choose one option from the list —
TVP5146 or SAA7115. When you select SAA7115 for the type of
decoder, the dialog box adds a new option — Output Mode.
Generally, older DM642 EVM boards use the SAA7115 decoder.
Newer boards use the default setting TVP5146 decoder. Refer to
“Identifying Your DM642 EVM Board Revision” on page A-7 for
information about identifying the revision of your DM642 EVM.

Input port
Directs the block to capture video from either the 0 or 1 video
input port on the DM642 EVM. The block does not support port 2

6-329

DM642 EVM Video ADC

for video input. Input port 0 provides both composite video (via
connector J15) and S-video (connector J16) inputs.

Mode
Select the video format to capture from the list. The block
supports NTSC and PAL video formats.

Analog Video Input
Select composite video or S-video. The video decoder connected to
port 0 has both composite and S-video inputs. These are available
via connector J15 and J16, respectively. Port 1 has two composite
video connectors and no S-video availability.

Output size
Reports the size of the video images to output. Output size is a
read-only parameter set to 720 x 576 resolution elements when
you select PAL mode and the TVP5146 decoder in Decoder type.
When you select NTSC mode with the TVP5146 decoder, Output
size reports the read-only value 720 x 480.

If you select the SAA7115 decoder, Output size lists the available
video sizes to output for further processing, depending on the
Mode setting. The following tables show the sizes to pick from
depending on whether you pick NTSC or PAL for Mode The block
scales the input video to the selected size for output.

Video Output Size Options
For NTSC Mode

Description

128 x 96 Output NTSC video with
dimensions 128 pixels by 96
pixels. Scales the output to 1/4
the resolution of QCIF video.

176 x 144 Output NTSC video with
dimensions 176 pixels by 144
pixels. Scales the output to 1/4
the resolution of CIF video.

6-330

DM642 EVM Video ADC

Video Output Size Options
For NTSC Mode

Description

320 x 240 Output NTSC video with
dimensions 320 pixels by 240
pixels. Scales the output to
standard interchange format
NTSC. Derived from CCIR 601
video (most often).

720 x 480 Output NTSC video with
dimensions 720 pixels by 480
pixels. Scales the output to
higher definition TV mode.

Video Output Size Options
For PAL Mode

Description

128 x 96 Output video with dimensions
128 pixels by 96 pixels

176 x 144 Output video with dimensions
176 pixels by 144 pixels.

320 x 240 Output video with dimensions
320 pixels by 240 pixels

720 x 576 Output video with dimensions
720 pixels by 576 pixels

Output format
Determines how the block represents color data in the output.
Choose one of the following color representations according to
what your model and algorithm require.

6-331

DM642 EVM Video ADC

Digital Output
Format Description

RGB24 Output uses 8 bits each of red, green, and
blue colors to represent the color of each
pixel in the image. RGB color space is
device-dependent.

YCbCr Output from the block includes one
luminance channel Y (essentially the
black/white signal) and two chrominance
(color) channels Cb and Cr to represent the
color image data per pixel. This is the digital
standard color space DVDs use.

Y Black/White video. No color/chromaticity
values.

Data order
With data order, you control the way the video decoder stores and
outputs video data fields and frames of images. Choose one of
these options from the list.

• Row major — store video data in row major order. This is the
default setting and matches most video data.

• Column major — store video data in column major order.
Simulink® and MATLAB® both use this format to store images
and matrices.

DM642 EVM Video ADC blocks store the image data in row major
format because most video capture devices use a scanning order of
left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store image
and matrix data. Therefore, some of the Simulink blocks may not
work correctly or as expected with the DM642 EVM Video ADC
blocks.

6-332

DM642 EVM Video ADC

To address this problem, the Video ADC blocks include an option
Data order to let you select either row major or the column
major storage formats. By default, this block uses row major data
format.

When you select Column major, the block performs an explicit
transposition on the image data to map the data format from row
major to column major order. To minimize the processor time
spent on the transposition, the block uses optimized assembly
routines to transpose the image data.

Inherit sample time
Selecting Inherit sample time sets the sample time to –1. To
use this block in a function call subsystem, you must select this
option. Inherit sample time is cleared by default and the block
uses the model sample time.

Specifying sample-time inheritance for a this block, a source
block, can cause Simulink to assign an inappropriate sample time
to the block. You should avoid selecting Inherit sample time
unless you are required to do so because you placed the block
in a function call subsystem. When you select Inherit sample
time, Simulink displays a warning message when you update
or simulate the model.

See Also DM642 EVM Video DAC

6-333

DM642 EVM Video DAC

Purpose Video encoder to display video

Library DM642 EVM Board Support Library in Target for TI C6000

Description In the project generated from a model, this block provides the code to
gather video from another block in the model, and direct the video
stream to the video output port on the board.

You should input unsigned 8-bit integers to the block in the specified
mode.

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture digital video data from the application on your DM642 EVM.

2 Buffer the captured video into frames for NTSC display — two fields
per frame and 30 frames per second, or SVGA display — RGB24
color with noninterlaced frames.

3 Convert to analog video.

4 Output the converted analog video to the EVM Video Out ports.

Unlike the DM642 EVM Video ADC block, this DAC block does not
convert the video between formats. Nor does this block inherit any
settings from the DM642 EVM Video ADC block, as some of the other
C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and
the format the block outputs to the video output ports on the EVM.

To be able to be displayed, images that you send to the block should be
equal to or smaller than the target display size. If the input images
are smaller than the target display size, the block pads the image by
adding zeros to the image.

When you add this block to your Simulink model, it has no affect on
your simulation — it outputs a string of zeros. In code generation, the

6-334

DM642 EVM Video DAC

block creates the device code needed to buffer, convert, and send video
to the output port on the EVM.

Note The DM642EVM board provides both composite and S-video
connectors for output. However, these are driven simultaneously, so you
do not need to specify which one is to be used.

Dialog
Box

Mode
Specifies the video format for the block. The block then sends
video in this format to the video output port on the EVM. The
Mode parameter offers the following options:

6-335

DM642 EVM Video DAC

Analog Output
Mode Description

NTSC 720x480
YCbCr

Analog output of video data in
720-by-480 pixels format with full color

NTSC 640x480 Y Analog video output in 640-by-480
pixels format with black and white only
(luminance). No color data.

SVGA 800x600
RGB24

Full super VGA format 800-by-600
pixels with three color channels: 8-bit
red, 8-bit green, and 8-bit blue data.

PAL 720x570 YCbCr Analog output of video data in
720-by-570 pixels PAL format with full
color

PAL 720 x 570 Y Analog output of video data in
720-by-570 pixels PAL format with black
and white only (luminance). No color
data

Data order
With data order, you control the way the video decoder stores and
outputs video data fields and frames of images. Choose one of
these options from the list.

• Row major — store video data in row major order. This is the
default setting and matches most video data.

• Column major — store video data in column major order.
Simulink® and MATLAB both use this format to store images
and matrices.

DM642 EVM Video DAC blocks store the image data in row
major format because most video display devices use a scanning
order of left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink use column major ordering to store
image and matrix data. Therefore, some of the Simulink blocks

6-336

DM642 EVM Video DAC

may not work correctly or as expected with the DM642 EVM
Video DAC blocks.

To address this problem, the Video DAC blocks include an
option Data order to let you select either row major or the
column major storage formats. By default, these blocks use
row major data format.

When the column major data ordering option is selected, the
block performs an explicit transposition on the image data to
map the data format from row major to column major order.
To minimize the processor time spent on the transposition,
the block uses optimized assembly routines to accomplish the
image transposition.

Center Image
Directs the block to center the output image on the display. Note
that centering the image requires some computation by the
processor so there are small time and CPU cycles penalties for
choosing this option. For that reason, Center image is cleared
by default.

Another note of interest — some cameras pad their video output
with zeros to ensure that the display does not cut off the image on
one side, usually the left. Images that include such padding may
appear to be off-center on the display. In fact, while the displayed
image may not appear centered, the electronic image (the data
that compose the displayed image plus the padding which you
cannot see) is centered in the display area.

See Also DM642 EVM Video ADC

6-337

DM642 EVM LED

Purpose Control LEDs

Library DM642 EVM Board Support Library in Target for TI C6000

Description Controls the user LEDs on the DM642 EVM while the processor
executes your generated code. To trigger the LEDs, input an unsigned
8-bit integer to the block. In response, the eight user-controlled LEDs
reflect the binary equivalent of that input value — turning off an LED
is 0 and turning on an LED is 1.

During operation, the LED block inherits the sample time from the
upstream block in the model. Therefor, each time the model operation
encounters the LED block, the block writes the desired output value
to the LEDs.

Dialog
Box

You see the block does not provide user options. Adding the block to
your model adds the ability to control the LEDs.

6-338

DM642 EVM Video Port

Purpose Video port to receive video data from video input port

Library DM642 EVM Board Support Library in Target for TI C6000

Description Adding this block to your model lets you define the format of raw video
captured by the video port on the DM642 EVM. The block outputs video
as a stream of image frames built from the defined input.

You can select the video port the block reads from, set the size of the
input data in bits per pixel, and define the frame sizes in pixels and
lines.

When your process captures standard video input, like NTSC format
video, another block for the DM642 EVM may be appropriate — the
DM642 EVM Video ADC block.

By default, the block settings define NTSC format input video to capture
— 640 pixels wide by 480 lines tall using 8 bits per pixel.

The block does not check your inputs to determine whether they form
valid frames. You must be sure the values you assign work for you
application.

The block does not support video capture from port 2 on the EVM.

Blanking intervals, both horizontal and vertical, represent the time
needed for the scan to return to the starting point of the next line (the
horizontal blanking period) or field or frame (the vertical blanking
period).

6-339

DM642 EVM Video Port

Dialog
Box

Video Port
Select the video port to be the source of the raw video data stream.
Either 0 or 1 appear on the list and 0 is the default port.

Number of bits per pixel
Select the number of bits used to represent a pixel in the input
video stream. List entries tell you the input pixel representation
and the data type of the output pixels for each input size. You
cannot enter values here. Select from the list.

6-340

DM642 EVM Video Port

Number of pixels per line
Configure the width of each video frame in pixels. Enter the pixel
count as an integer greater than zero.

Number of lines per frame
Configure the height of a single frame of video in lines. Enter the
number of lines as an integer greater than zero. Combined with
the Number of bits per pixel, this specifies the video frame
format.

Pixel clock frequency
Specify the rate at which picture elements (pixels) arrive at the
block input. Usually you enter this in Hz using scientific notation
as shown by the default value. You can enter the value in decimal
notation as well.

Horizontal blanking (in pixel clocks)
The blanking signal that occurs at the end of each video scanning
line. Enter the value as an integer number of pixels. One video
line comprises the number of pixels in the line plus the horizontal
blanking pixels.

Vertical blanking (in pixel clocks)
The blanking signal that occurs at the end of each video field or
frame. Enter this value as an integer number of lines (pixels).
One frame includes the number of lines in the height of the frame
plus the additional blanking lines.

Data order
With this option you tell the encoder whether to output video
in row major or column major order. Most video capture and
display systems use row major ordering. MATLAB and Simulink
use column major order. As a result, some Simulink blocks and
MATLAB operations may not produce the output you expect
unless you change the ordering for video from the default row
major setting to column major.

Inherit sample time
Selects whether the block inherits the sample time from the model
base rate/Simulink base rate as determined in the Solver options

6-341

DM642 EVM Video Port

in Configuration Parameters. Selecting Inherit sample time
directs the block to use the specified rate in model configuration.
Entering -1 configures the block to accept the sample rate from
the upstream HWI, Task, or Triggered Task blocks.

See Also DM642 EVM Video ADC, DM642 EVM Video DAC

6-342

DM642 EVM Reset

Purpose Reset to initial conditions

Library DM642 EVM Board Support in Target for TI C6000

Description Double-clicking this block in a Simulink model window resets the
DM642 EVM that is running the executable code built from the model.
When you double-click the Reset block, the block runs the software reset
function provided by CCS that resets the processor on your DM642
EVM. Applications running on the board stop and the signal processor
returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any block
in the model. When you double-click this block in the block library it
resets your DM642 EVM. In other words, anytime you double-click a
DM642 EVM Reset block you reset your DM642 EVM.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog box.

6-343

DM6437EVM

Purpose Configure model for DM6437 Evaluation Module

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation for
your DM6437 Evaluation Module target. Adding this block to your
Simulink model provides access to the processor hardware settings to
configure when you generate code from Real-Time Workshop to run on
the target.

Any model that you target to the DM6437 evaluation module must
include this block, or the Custom C6000 target preferences block.
Real-Time Workshop returns an error message if a target preferences
block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM6437 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-344

DM6437EVM

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the DM642 EVM
from a subsystem, the subsystem model must include a DM642EVM
target preferences block.

Dialog
Box

6-345

DM6437EVM

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. By default, the DM642EVM block
specifies the DM642EVM for the board type.

Processor
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not

6-346

DM6437EVM

match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

6-347

DM6437EVM

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Operating System
Specify the operating system for the target.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory. The examples in the
following figure use the string.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

6-348

DM6437EVM

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default.

• Initialize functions Enter specific initialization functions
if needed.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

6-349

DM6437EVM

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-350

DM6437EVM

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Heap — specifies whether you use a heap and determines the size
in words

• L2 Cache — enables the L2 cache (where available) and sets the
size in kB

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments. DM642EVM boards provide ISRAM
and SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list,
the name of the entry appears here. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

6-351

DM6437EVM

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you

6-352

DM6437EVM

store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — allow code to be stored in the memory segment in
Name.

• Data — allow data to be stored in the memory segment in
Name.

• Code and Data — allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
Selecting this option enables creating the heap, and enables the
Heap size option.

Using this option you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

6-353

DM6437EVM

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Enabled by selecting Define label, you use this option to provide
the label for the heap. Any combination of characters is accepted
for the label, except reserved characters in C/C++ compilers.

Cache Level
Specify the cache level to use.

Configuration
Specify the memory configuration for the cache..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

6-354

DM6437EVM

Within this pane and the DSP/BIOS pane, you configure the allocation
of sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

6-355

DM6437EVM

String
Section
List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

6-356

DM6437EVM

String
Section
List Description of the Section Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Default Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

6-357

DM6437EVM

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Section Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains ISRAM and SDRAM when you use this block.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, just a placeholder for a
section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new

6-358

DM6437EVM

name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

6-359

DM6437EVM

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options

6-360

DM6437EVM

specify the stack use and locations on the stack for static and dynamic
tasks.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Briefly explains the contents of the DSP/BIOS sections list
entries.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

Data object placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the Data Object
Placement list. All DSP/BIOS objects use the same memory
segment. You cannot select the location for individual objects.

Code object placement
Distinct from the entries on the DSP/BIOS sections list,
specifies the location of code objects.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks

6-361

DM6437EVM

do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

6-362

DSP/BIOS Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library DSP/BIOS Library in Target for TI C6000

Description Creates an Interrupt Service Routine (ISR) that executes the task block
or subsystem that is downstream from the block. ISRs are functions
that the CPU executes in response to an external event.

Interrupt numbers for C6000 family processors range from 0 to 15,
with 0 reserved for the reset ISR. The following table presents the
set of interrupt numbers for the C6713 processor. For more detailed
and specific information about interrupts, refer to Texas Instruments
technical documentation for your target processor.

Interrupt
Number Default Event Module

0 Reset

1 NMI

2 Reserved

3 Reserved

4 GPINT4 GPIO

5 GPINT5 GPIO

6 GPINT6 GPIO

7 GPINT7 GPIO

8 EDMAINT EDMA

9 EMUDTDMA Emulation

10 SDINT EMIF

11 EMURTDXRX Emulation

12 EMURTDXTX Emulation

13 DSPINT HPI

6-363

DSP/BIOS Hardware Interrupt

Interrupt
Number Default Event Module

14 TINT0 Timer 0

15 TINT1 Timer 1

In models, you usually follow this block with either a DSP/BIOS Task or
DSP/BIOS Triggered Task block, or a subsystem function call block.

Dialog
Box

Interrupt number(s)
Enter one or more integer values as a vector that represent
interrupts. Interrupts have any value from 0, the highest priority
to 15, lowest priority. As shown, enter the values enclosed in
square brackets. For example, entering

[3 5 15]

6-364

DSP/BIOS Hardware Interrupt

results in three interrupt routines. [5 8] is the default entry,
specifying two interrupts.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Manage own timer
The ISR generated by the this block can manage its own time by
reading time from the clock on the board. Selecting this option
directs the ISR to maintain the time itself. When you select
Manage own timer, you enable the Timer resolution option
that reports the timer resolution the ISR uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

Enable simulation input
Selecting this option adds an input port to the block for simulating
inputs in Simulink. Connect interrupt simulation sources to the
input. This option affects simulation only. It does not affect
generated code.

6-365

DSP/BIOS Hardware Interrupt

See Also DSP/BIOS Task, DSP/BIOS Triggered Task

6-366

DSP/BIOS Task

Purpose Create task that runs as separate DSP/BIOS thread

Library DSP/BIOS Library in Target for TI C6000

Description Creates a free-running task that runs in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream
function call subsystem in the model.

When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.

Dialog
Box

6-367

DSP/BIOS Task

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters as needed. You cannot use the
standard C reserved characters, such as / and : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is
4096 bytes.

Stack memory segment
Specify where the stack resides in memory.

Manage own timer
This block can manage its own time by reading time from the
clock on the board. Selecting this option directs the task/block to
maintain the time itself. When you select Manage own timer,
you enable the Timer resolution option that reports the timer
resolution the task uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

See Also DSP/BIOS Hardware Interrupt, DSP/BIOS Triggered Task

6-368

DSP/BIOS Triggered Task

Purpose Create asynchronously triggered task

Library DSP/BIOS Library in Target for TI C6000

Description Creates a task that runs asynchronously in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream
function call subsystem in the model.

When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.

Dialog
Box

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters as needed. You cannot use the
standard C reserved characters, such as / or : in the name.

6-369

DSP/BIOS Triggered Task

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority, unless the preemptible flag (Preemption flag
option on the Hardware Interrupt block) prevents preempting
the task.

Stack size (bytes)
Specify the size of the stack the task uses. The default value is
4096 bytes. Take care to set the stack size as large as necessary. If
the task uses more than the allotted space it can write into other
memory areas with unintended results.

Stack memory segment
Specify where the stack resides in memory by specifying the
memory segment. Additional information about DSP/BIOS
memory segments also appears in the Target Preferences block
in the model.

Synchronize data transfer of this task with caller task
Specify whether this task should synchronize data transfer with
the calling task. Select this option to enable synchronization.
Clearing this option enables the Timer resolution option.

Timer resolution
When you direct the block not to synchronize data with the calling
task (by clearing Synchronize data transfer of this task with
caller task), Timer resolution reports the resolution of the
timer. Timer resolution is a read-only parameter. You cannot
change the value.

See Also DSP/BIOS Hardware Interrupt, DSP/BIOS Task

6-370

From Memory

Purpose Get data from a specific memory location into your code running on
the C6000 target

Library C6000 DSP Core Support in Target for TI C6000

Description
Note This block will be removed in the future. Please use the Memory
Allocate and Memory Copy blocks instead.

When you generate code from your Simulink model in Real-Time
Workshop with this block in place, code generation inserts the C
commands to create a read process that gets data from memory on
the target. The inserted code reads the specified memory location in
Memory address and returns the data stored there. Any valid memory
location on the target works with the block.

When you look at your generated code, you find lines of code like the
following that represent the From Memory block operation:

/* S-Function Block: <Root>/From Memory (c6000mem_src) */
{

/* Memory Mapped Input */
rtB.From_Memory = (real_T)(*((volatile int *)(4096U)));

}

In simulations this block does not perform any operations, with the
exception that the block does output port checking. From Memory blocks
work only in code generation and when your model runs on your target.

Using From Memory Blocks

Be careful when you use From Memory blocks in your models in
combination with To Memory blocks. Because the To Memory blocks
give you control over where the target stores information in memory,
pay attention to how you use the From Memory block to retrieve data
from memory. You can return data that is not what you expect.

6-371

From Memory

Using the From Memory block itself does not cause problems in
generated code on your target.

When you use the options in the To Memory block to specify where
the project writes data in memory, you might be writing to memory
locations that are reserved for the compiler or for other uses. Reading
from those locations could return the wrong answer.

To prevent your model from encountering memory errors like these,
generate your code once without loading the COFF file to the target.
Look at the generated file projectname.map, where projectname is the
name of your project, to see the memory range that the compiler uses.

From this list of allocated memory, determine the memory ranges that
the compiler uses and the locations of free memory or the memory to
read with your From Memory block. Determine the memory locations
from which to read your data from the .map file listings.

You should examine the .map file for your project each time you change
the Simulink model associated with your project.

Dialog
Box

Memory address (hex)
Enter the address of the memory location that contains the data
to return. Note that you do not need to start the address with 0x
to indicate that it is hexadecimal.

6-372

From Memory

Data type
Sets the type for the data coming from the block. Select one of
the following types:

• double — double-precision floating-point values. This is the
default setting.

• single — single-precision floating-point values.

• uint8 — 8-bit unsigned integers. Output values range from 0
to 255.

• int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Sample time
Specifies the time between samples of the signal. The default is
1 second between samples, for a sample rate of one sample per
second (1/Sample time).

See Also To Memory

6-373

From Rtdx

Purpose Add RTDX communication channel to send data from MATLAB to target

Library RTDX Instrumentation in Target for TI C6000

Description When you generate code from your Simulink model in Real-Time
Workshop with this block in place, code generation inserts the C
commands to create an RTDX input channel on the target. The inserted
code opens and enables the channel with the name you specify in
Channel name in the block parameters. You can open, close, disable,
and enable the channel from the host side afterwards, overriding the
target side status.

In the generated code, you see a command like the following

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

In simulations this block does not perform any operations with the
exception that the block will generate an output matching your specified
initial conditions. From Rtdx blocks work only in code generation and
when your model runs on your target.

If you are using Link for Code Composer Studio Development Tools,
you need to configure and cleanup RTDX properly before and after
executing your model or code. Refer to the in Link for Code Composer
Studio documentation in the online Help system to see an example of
how to do this housekeeping task.

The initial conditions you set in the block parameters determine the
output from the block to the target for the first read attempt. Specify
the initial conditions in one of the following ways:

• Scalar value — the block generates one output sample with the
value of the scalar. For a value of 0, the block outputs a zero to
the processor. When Output dimension specifies an array, every
element in the array has the same scalar value.

6-374

From Rtdx

• Null array ([]) — same output as a scalar with the value zero for
every sample.

Using RTDX in your model involves:

• Adding one or more To Rtdx or From Rtdx blocks to your model to
prepare your target

• Downloading and running your model on your target

• Enabling the RTDX channels from MATLAB or using Enable RTDX
channel on start-up on the block dialog box

• Using the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX

To see more details about using RTDX in your model, refer to Using
Links in your Link for Code Composer Studio Development Tools
documentation in the online Help system.

6-375

From Rtdx

Dialog
Box

Channel name
Defines the name of the input channel to be created by the
generated code. Recall that input channels refer to transferring
data from the host to the target (input to the target). To use this
RTDX channel, you enable and open the channel with the name,
and send data from the host to the target across this channel.
Specify any name as long as it meets C syntax requirements for
length and character content.

6-376

From Rtdx

Enable blocking mode
Puts RTDX communications into blocking mode where the target
processor waits to continue processing until new data is available
from the From Rtdx block. Selecting blocking mode slows your
processing while the processor waits — if your new data is not
available when the processor needs it, your process stops. In non
blocking mode, the processor uses old data from the block when
new data is not available. Non blocking operation is the default
and recommended for most operations.

Selecting the Blocking option disables the Initial conditions
option.

Initial conditions
Specifies what data the processor reads from RTDX for the first
read. This can be 0, null ([]), or a scalar. You must have an
entry for this option. Leaving the option blank causes an error
in Real-Time Workshop.

Sample time
Specifies the time between samples of the signal. The default is
1 second between samples, for a sample rate of one sample per
second (1/Sample time).

Output dimensions
Defines a matrix for the output signal from the block, where the
first value is the number of rows and the second is the number of
columns in the output matrix. For example, the default setting [1
64] represents a 1-by-64 matrix of output values. Enter a 1-by-2
vector of doubles for the dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can greatly
increase the speed of your application running on your target.

6-377

From Rtdx

Note that throughput remains the same in samples per second
processed. Frame-based operation is the default.

Data type
Sets the type for the data coming from the block. Select one of
the following types:

• Double — double-precision floating-point values. This is the
default setting. Values range from -1 to 1.

• Single — single-precision floating-point values ranging from
-1 to 1.

• Uint8 — 8-bit unsigned integers. Output values range from 0
to 255.

• Int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• Int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Enable RTDX channel on start-up
When your application code includes RTDX channel definitions,
selecting this option enables the channels when you start the
channel from MATLAB. With this selected, you do not need to
use Link for Code Composer Studio Development Tools enable
function to prepare your RTDX channels. Note that the option
applies only to the channel you specify in Channel name. You do
have to open the channel.

See Also ccsdsp, readmsg, To Rtdx, writemsg

6-378

Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library C6000 DSP Core Support in Target for TI C6000

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the target that run the processes that are
downstream from the this block or a Task block connected to this block.

Dialog
Box

Interrupt Number(s)
Specify an array of interrupt numbers for the interrupts to install.
The valid range is 1 to 15.

The width of the block output signal corresponds to the number of
interrupt numbers specified here. Combined with the Simulink
task priority(s) you enter and the preemption flag you enter for

6-379

Hardware Interrupt

each interrupt, these three values define how the code and target
process interrupts during asynchronous scheduler operations.

Simulink task priority(s)
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt number(s).

Simulink task priority values are required to generate the proper
rate transition code (see Rate Transitions and Asynchronous
Blocks). The task priority values are also required to ensure
absolute time integrity when the asynchronous task needs to
obtain real time from its base rate or its caller. Typically, you
assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

6-380

Hardware Interrupt

Manage own timer
The ISR generated by the this block can manage its own time by
reading time from the clock on the board. Selecting this option
directs the ISR to maintain the time itself. When you select
Manage own timer, you enable the Timer resolution option
that lets you set the timer resolution the ISR uses.

Enable simulation input
When you select this option, Simulink adds an input port to
the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

6-381

Idle Task

Purpose Create free-running task

Library C6000 DSP Core Support in Target for TI C6000

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers vector
and the preemption flag or flags vector. The preemption flag(s)
vector must be the same length as the number of tasks vector unless
the preemption flag vector has only one element. The value of the
preemption flag determines whether a given interrupt (and task) is
preemptible. Preemption overrides prioritization. A lower priority
nonpreemptible task can preempt a higher priority preemptible task.

When the preemption flag(s) vector has one element, that element value
applies to all functions in the downstream subsystem as defined by the
task numbers in the task number vector. If the preemption flag vector
has the same number of elements as the task number vector, each task
defined in the task number vector has a preemption status defined by
the value of the corresponding element in the preemption flag(s) vector.

6-382

Idle Task

Dialog
Box

Task number(s)
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2] to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed, the value
of the second element determines the order in which the second
function in the subsystem is executed, and so on.

6-383

Idle Task

For example, entering [2,3,1] in this field indicates that there are
three functions to be executed, and that the third function will be
executed first, the first function will be executed second, and the
second function will be executed third. When all functions have
been executed, the Idle Task block cycles back and repeats the
execution of the functions in the same order.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Task number(s) contains more than one task, you can assign
different preemption flags to each task by entering a vector of
flag values, corresponding to the order of the tasks in Task
number(s). If Task number(s) contains more than one task, and
you enter only one flag value here, that status applies to all tasks.

In the default settings [0 1], the task with priority 1 in Task
number(s) is not preemptible and the priority 2 task can be
preempted.

Enable simulation input
When you select this option, Simulink adds an input port to the
Idle Task block. This port is used in simulation only. Connect one
or more simulated interrupt sources to the simulation input.

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink.

6-384

Memory Allocate

Purpose Allocate memory section on C6000 target

Library C6000 DSP Core Support in Target for TI C6000

Description On your C6000 target, this block directs the TI compiler to allocate
memory for a new variable you specify. Parameters in the block dialog
box let you specify the variable name, the alignment of the variable in
memory, the data type of the variable, and other features that fully
define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

Notice that the block does not have input or output ports. It serves only
to allocate a memory location. You do not connect it to other blocks
in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

Note that the dialog box images show all of the available parameters
enabled. Some of the parameters shown do not appear until you select
one or more other parameters.

6-385

Memory Allocate

Sections below describe the contents of each tab in the dialog box.

6-386

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable will be
allocated in the generated code.

6-387

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, the Memory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your process requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter the
qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

6-388

Memory Allocate

Section Parameters

Parameters on this tab relate to specifying the section in memory to
store the variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

6-389

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. You must be sure the section has sufficient
space to store your variable.

Bind memory section
After you specify a memory section by selecting Specify memory
section and entering the section name in Memory section,
use this parameter to bind the memory section to the location in
memory specified in Section start address. When you select
this, you enable the Section start address parameter.

Note that the new memory section (specified in Memory section)
is defined when you check this parameter. Do not use Bind
memory section for existing memory sections.

Section start address
Specify the address to which to bind the memory section. Enter
the address in decimal form or in hexadecimal with a conversion
to decimal as shown by the default value hex2dec('8000').
The block does not verify the address — you must be sure the
address exists and can contain the memory section you entered in
Memory section.

See Also Memory Copy

6-390

Memory Copy

Purpose Copy to and from memory section

Library C6000 DSP Core Support in Target for TI C6000

Description In generated code, this block copies variables or data from and to target
memory as configured by the block parameters. Your model can contain
as many of these blocks as you require to manipulate memory on your
target.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, not for every read and write operation.

With the custom source code options, the block enables you to add
custom C source code before and after each memory read and write
(copy) operation. One use for the custom code capability would be to
lock and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

If your processor or target supports quick direct memory access (QDMA)
the block provides a parameter to check that implements the QDMA
copy operation, and provides you the ability to specify a function call
that can indicate that the QDMA copy is finished. Only the C621x,
C64xx, and C671x processor families support QDMA copy.

Block Operations

This block performs operations at three periods during program
execution — initialization, real-time operations, and termination.
With the options for setting memory initialization and termination,
you control when and how the block initializes memory, copies to and

6-391

Memory Copy

from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
Note that this block does not require the Memory Allocate block to be in
the model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copying Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options — Select various parameters to control the copy process.

Note that the dialog box images show many of the available parameters
enabled. Some parameters shown do not appear until you select one or
more other parameters. Some parameters are not shown in the figures,
but the text describes them and how to make them available.

6-392

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

6-393

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port — this reads the data from the block input port.

6-394

Memory Copy

• Specified address — this reads the data at the specified
location in Specify address source and Address.

• Specified source code symbol — tells the block to read the
symbol (variable) you enter in Source code symbol. When
you select this copy from option, you enable the Source code
symbol parameter.

Note If you do not select the Input port option for Copy
from, you must change the Data type parameter setting from
the default Inherit from input port to one of the data types
on the Data type list. If you do not make the change, you
receive an error message that the data type cannot be inherited
because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses

6-395

Memory Copy

valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. Here is one example
that converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from input port
for inheriting the data type for the variable from the block input
port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable

6-396

Memory Copy

the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a scalar with positive integer value
of one or greater.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

6-397

Memory Copy

6-398

Memory Copy

6-399

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port — Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

• Specified address — Copies the data to the specified location
in Specify address source and Address.

6-400

Memory Copy

• Specified source code symbol — tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Note If you do not select the Output port option for Copy to,
you must change the Data type parameter setting from the
default Inherit from source to one of the data types on the
Data type list. If you do not make the change, you receive an
error message that the data type cannot be inherited because
the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

6-401

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. Here is one example
that converts Ox2000 to decimal form.

8192 = hex2dec('2000');

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from input port
for inheriting the data type for the variable from the block input
port.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

6-402

Memory Copy

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a scalar
with positive integer value of one or greater.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in
the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

6-403

Memory Copy

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to tell the
block to inherit the sample time from the input if there is one or
the Simulink model (when there are no input ports on the block).
Enter the sample time in seconds as you need.

6-404

Memory Copy

Options Parameters

6-405

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you check this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value, or tell the
block to get the initial value from the input

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use here. Any real value that
meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use here. Any symbol that meets your
needs and is in the symbol table for the program is acceptable.
When you enter the symbol, the block does not verify whether the
symbol is a valid one. If it is not valid you get an error when you
try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

6-406

Memory Copy

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol as well.

Bitwise operator
To use the initialization value as a mask, select one of the
following from the Bitwise operator list to describe how to apply
the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

6-407

Memory Copy

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution — initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom C code before the program
writes to the specified memory location. When you check this, you
enable the Custom code parameter where you enter your C code.

Custom code
Enter the custom C code to insert into the generated code just
before the memory write operation. Code you enter here appears
in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom C code immediately after
the program writes to the specified memory location. When you
check this, you enable the Custom code parameter where you
enter your C code.

Custom code
Enter the custom C code to insert into the generated code just
after the memory write operation. Code you enter here appears in
the generated code exactly as you enter it.

6-408

Memory Copy

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA),
check this parameter to enable the QDMA operation and to access
the blocking mode parameter.

If you check this parameter, your source and destination data
types must be the same or the copy operation returns an error.
Also, the input and output stride values must be one.

Enable blocking mode
If you check the Use QDMA for copy parameter, check this
option to direct the memory copy operations to be blocking
processes. With blocking enabled, other processing in the program
waits while the memory copy operation finishes.

See Also Memory Allocate

6-409

TCI6482DSK

Purpose Configure model for TCI 6482 DSK

Library Target Preferences in Target for TI C6000

Description Options on the block mask let you set features of code generation
for your TCI6482 target. Adding this block to your Simulink model
provides access to the processor hardware settings to configure when
you generate code from Real-Time Workshop to run on the target.

Any model that you target to the TCI6482 evaluation module must
include this block, or the Custom C6000 target preferences block.
Real-Time Workshop returns an error message if a target preferences
block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

The processor and target options you specify on this block are:

• Target board information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, DSP/BIOS,
and custom sections

Setting the options included in this dialog box results in identifying your
target to Real-Time Workshop, Target for TI C6000, and Simulink, and
configuring the memory map for your target. Both steps are essential
for targeting any board that is custom or explicitly supported, such as
the C6713 DSK or the DM642 EVM.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the
block dialog, the block attempts to connect to your target. It cannot

6-410

TCI6482DSK

make the connection when the block is in the library and returns an
error message.

Generating Code from Model Subsystems

Real-Time Workshop provides the ability to generate code from a
selected subsystem in a model. To generate code for the DM642 EVM
from a subsystem, the subsystem model must include a TCI6482DSK
target preferences block.

Dialog
Box

6-411

TCI6482DSK

All target preferences block dialog boxes provide tabbed access to the
following panes with options you set for the target processor and target
board:

• Board info — Select the target board and processor, set the clock
speed, and identify the target.

• Memory — Set the memory allocation and layout on the target
processor (memory mapping).

• Sections — Determine the arrangement and location of the sections
on the target processor such as where to put the DSP/BIOS and
compiler information.

• DSP/BIOS — Specify how to configure tasking features of DSP/BIOS.

Board Info Pane

The following options appear on the Board Info pane for the C6000
Target Preferences dialog box.

Board Type
Lets you enter the type of board you are targeting with the model.
You can enter Custom to support any board based on one of the
supported processors, or enter the name of one of the supported
boards, such as C6713DSK. By default, the TCI6482DSK block
specifies the TCI6482DSK for the board type.

Processor
Lets you select the type of processor on the board you select in
CCS board name. The processor type you enter determines the
contents and setting for options on the Memory and Sections
panes in this dialog box. If you are targeting one of the supported
boards, Device is disabled and the selected device is fixed.

CPU Clock Speed (MHz)
Shows the clock speed of the processor on your target. When you
enter a value, you are not changing the CPU clock rate. Instead,
you are reporting the actual rate. If the value you enter does not

6-412

TCI6482DSK

match the rate on the target, your model’s real-time results may
be wrong, and code profiling results are not correct.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock speed to the actual board rate allows the code you generate
to run correctly according to the actual clock rate of the hardware.

When you generate code for C6000 targets from Simulink models,
you may encounter the software timer. The timer is invoked
automatically to handle and create interrupts to drive your model
if either of the following conditions occur:

• If your model does not include ADC or DAC blocks

• When the processing rates in your model change (the model
is multirate)

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your target. You can change the rate with
the DIP switches on the board or from one of the software utilities
provided by Texas Instruments.

For the timer software to calculate the interrupts correctly, Target
for TI C6000 needs to know the actual clock rate of your target
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your target CPU runs, which is the rate
to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock
speed to calculate the time for each interrupt. For example, if
your model includes a sine wave generator block running at 1 kHz
feeding a signal into an FIR filter block, the timer needs to create
interrupts to generate the sine wave samples at the proper rate.
Using the clock rate you choose, 100 MHz for example, the timer
calculates the sine generator interrupt period as follows for the
sine block:

6-413

TCI6482DSK

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires
100,000,000/1000 = 1 Sine block interrupt per 1,000,000 clock ticks

So you must report the correct clock rate or the interrupts come at
the wrong times and the results are incorrect.

Simulator
Select this option when you are targeting a simulator rather than
a hardware target. You must select Simulator to target your
code to a C6000 simulator.

Enable High-Speed RTDX
Select this option to tell the code generation process to enable
high-speed RTDX for this model.

Operating System
Specify the operating system for the target.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. Five options provide access to
text areas where you enter files and file paths.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the CCS installation directory. The examples in the
following figure use the string.

Enter new paths or files (custom code items) one to a line. Include
the full path to the file for libraries and source code. Board
custom code options do not support functions that use return
arguments or values. Only functions of type void fname void
are valid as entries in these parameters.

6-414

TCI6482DSK

• Source files — you enter the full paths to source code files
to use with this target. By default there are no entries in this
parameter.

• Include paths — If you require additional files on your path,
you add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — these entries identify specific libraries that the
target requires. They appear on the list by default.

• Initialize functions — DM642 EVM targets require a
specific initialization function, listed here as EVMDM642_init.
Enter others if needed.

• Terminate functions — enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

CCS Board Name
Contains a list of all the boards defined in CCS Setup. From
the list of available boards, select the one that you are targeting
your code for.

6-415

TCI6482DSK

CCS Processor Name
Lists the processors on the board you selected for targeting in
CCS board name. In most cases, only one name appears because
the board has one processor. In the multiprocessor case, you select
the processor by name from the list.

Memory Pane

When you target any board, you need to specify the layout of the
physical memory on your processor and board to determine how use
it for your program. For supported boards, the board-specific target
preferences blocks set the default memory map.

6-416

TCI6482DSK

The Memory pane contains memory options in three areas:

• Physical Memory — specifies the processor and board memory map

• Heap — specifies whether you use a heap and determines the size
in words

• L2 Cache — enables the L2 cache (where available) and sets the
size in kB

Be aware that these options may affect the options on the Sections
pane. You can make selections here that change how you configure
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for Code Composer Studio.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows the memory
segments available on the board, but off of the processor. Target
preferences blocks set default starting addresses, lengths, and contents
of the default memory segments. DM642EVM boards provide ISRAM
and SDRAM memory segments by default.

Name
When you highlight an entry on the Physical memory list,
the name of the entry appears here. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name here.

Note You cannot change the names of default processor memory
segments.

6-417

TCI6482DSK

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in Name. Address entries are in hexadecimal format and
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the C6000 processor family,
the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you

6-418

TCI6482DSK

store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — allow code to be stored in the memory segment in
Name.

• Data — allow data to be stored in the memory segment in
Name.

• Code and Data — allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this is the default setting for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the target memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list.
In Name, change the temporary name NEWMEM1 by entering the
new segment name. Entering the new name, or clicking Apply
updates the temporary name on the list to the name you enter.

Remove
This option lets you remove a memory segment from the memory
map. Select the segment to remove on the Physical memory list
and click Remove to delete the segment.

Create Heap
Selecting this option enables creating the heap, and enables the
Heap size option.

Using this option you can create a heap in any memory segment
on the Physical memory list. Select the memory segment on the
list and then select Create heap to create a heap in the select
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

6-419

TCI6482DSK

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You can
enter the value directly in hexadecimal format as well. Processors
may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Enabled by selecting Define label, you use this option to provide
the label for the heap. Any combination of characters is accepted
for the label, except reserved characters in C/C++ compilers.

Cache Level
Specify the cache level to use.

Configuration
Specify the memory configuration for the cache..

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments — sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, some to
DSP/BIOS, and some can be custom sections as you require.

For more information about program sections and objects, refer to the
CCS online help.

6-420

TCI6482DSK

Within this pane and the DSP/BIOS pane, you configure the allocation
of sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the kinds of sections in the
Compiler sections, DSP/BIOS sections/objects, and Custom
sections lists in the pane. All sections do not appear on all lists. The
list the string appears on is shown in the table.

6-421

TCI6482DSK

String
Section
List Description of the Section Contents

.args DSP/BIOS Argument buffers

.bss Compiler Static and global C variables in the code

.bios DSP/BIOS DSP/BIOS code if you are using DSP/BIOS
options in your program

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and
string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS startup
initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the target
program can read

.pinit Compiler Load allocation of the table of global object
constructors section.

.rtdx_text DSP/BIOS Code sections for the RTDX program
modules

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysdata DSP/BIOS Data about DSP/BIOS

6-422

TCI6482DSK

String
Section
List Description of the Section Contents

.sysinit DSP/BIOS DSP/BIOS initialization startup code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

.trcdata DSP/BIOS TRC mask variable and its initial value
section load allocation

You can learn more about memory sections and objects in your Code
Composer Studio online help.

Default Sections
During program compilation, the C6000 compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Compiler sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections. The initialized
sections are:

• .cinit

• .const

• .switch

• .text (created by the assembler)

These sections are uninitialized:

• .bss (created by the assembler)

• .far

• .stack

6-423

TCI6482DSK

• .sysmem

Other sections appear on the list as well:

• .data (created by the assembler)

• .cio

• .pinit

Note The C/C++ compiler does not use the .data section.

When you highlight a section on the list, Description shows
a brief description of the section. Also, Placement shows you
where the section is presently allocated in memory.

Section Description
Provides a brief explanation of the contents of the selected entry
on the Compiler sections list.

Placement
Shows you where the selected Compiler sections list entry
is allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains ISRAM and SDRAM when you use this block.

Custom Sections
When your program uses code or data sections that are not
included in either the Compiler sections or DSP/BIOS sections
lists, you add the new sections to this list. Initially, the Custom
sections list contains no fixed entries, just a placeholder for a
section for you to define.

Name
You enter the name for your new section here. To add a new
section, click Add. Then replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include the period in your new

6-424

TCI6482DSK

name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select any
segment that appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section
to the Custom sections list. After typing the new name, click
Apply to add the new section to the list. You can also click OK to
add the section to the list and close the dialog box.

Remove
To remove a section from the Custom sections list, select the
section and click Remove.

DSP/BIOS Pane

Options on this pane let you specify how to configure tasking features of
DSP/BIOS.

The asynchronous task scheduler uses these options when you select
the Incorporate DSP/BIOS option in the model configuration set.
By default, Incorporate DSP/BIOS is selected and Target for TI
C6000 creates separate DSP/BIOS tasks for each sample time in your
Simulink model.

DSP/BIOS tasking blocks provide parameters on their block dialog
boxes so you can specify the DSP/BIOS stack size and stack segment
(where the stack is in memory) for asynchronous tasks created by the
DSP/BIOS Task and DSP/BIOS Triggered Task blocks.

The code generation process uses the options on this pane to configure
TSK entries in the TSK Task Manager in CCS when it creates
DSP/BIOS tasks.

6-425

TCI6482DSK

When you clear the Incorporate DSP/BIOS option, you disable the
options in this pane. Your project does not include DSP/BIOS tasks, and
Target for TI C6000 uses an interrupt-based scheduler.

For more information about tasks, refer to the Code Composer Studio
online help.

Within this pane, you configure the options for DSP/BIOS tasks, such as
the task manager and scheduler configuration. Note that the Sections
pane includes DSP/BIOS configuration options as well. The options

6-426

TCI6482DSK

specify the stack use and locations on the stack for static and dynamic
tasks.

DSP/BIOS Sections
During program compilation, DSP/BIOS produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the DSP/BIOS sections list you find both initialized
(sections that contain data or executable code) and uninitialized
(sections that reserve space in memory) sections.

Description
Briefly explains the contents of the DSP/BIOS sections list
entries.

Placement
Shows where the selected DSP/BIOS sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments available on C6000 processors,
and changes based on the processor you are using.

Data object placement
Distinct from the entries on the DSP/BIOS sections list,
DSP/BIOS objects like STS or LOG, if your project uses them, get
placed in the memory segment you select from the Data Object
Placement list. All DSP/BIOS objects use the same memory
segment. You cannot select the location for individual objects.

Code object placement
Distinct from the entries on the DSP/BIOS sections list,
specifies the location of code objects.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU
context during thread preemption for task threads. This option
sets the size of the DSP/BIOS stack in bytes allocated for each
task. 4096 bytes is the default value. You can set any size up
to the limits for the processor. Set the stack size so that tasks

6-427

TCI6482DSK

do not use more memory than you allocate. While any task can
use more memory than the stack includes, this might cause the
task to write into other memory or data areas, possibly causing
unpredictable behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static
tasks. Static tasks are created whether or not they are needed for
operation, compared to dynamic tasks that the system creates
as needed. Tasks that your program uses often might be good
candidates for static tasks. Infrequently used tasks usually work
best as dynamic tasks.

The list offers options SDRAM and ISRAM for locating the stack in
memory, with SDRAM as the default section. The Memory pane
provide more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this
option specifies where to locate the stack for dynamic tasks. In
this case, SDRAM is the only valid stack location in memory.

6-428

To Memory

Purpose Send data from processor to memory on C6000 target

Library C6000 DSP Core Support in Target for TI C6000

Description
Note This block will be removed in the future. Please use the Memory
Allocate and Memory Copy blocks instead.

When your Simulink model has this block in place, Real-Time Workshop
code generation inserts the C commands to write data to the specified
memory location on the target. The inserted code takes the value you
send to the block input port and writes it to the location in Memory
address.

In the generated code, you see something like these lines representing
the To Memory block operation:

/* S-Function Block: <Root>/To Memory (c6000mem_snk) */
{

/* Memory Mapped Output */
*((volatile int *)(4096U)) = (real32_T) 8;

}

In simulations this block does not perform any operations. To Memory
blocks work only in code generation and when your model runs on your
target.

Options for the block let you send different starting and ending values
to memory when the program runs on the digital signal processor.

Using To Memory Blocks

You must take care when you use To Memory blocks in your models.
Because the To Memory blocks give you control over where the target
stores information in memory, and provide full flexibility to copy any
section of target data and write to any memory sections, pay attention
to how you use the block memory options. This flexibility can lead to
unexpected behavior caused by memory operations in your model.

6-429

To Memory

When you use the optional features in the To Memory block to write
data to specified locations in memory, you might be writing to memory
locations that are reserved for the compiler to use. Writing to those
locations can cause CCS to crash.

To prevent your model from encountering memory errors like these,
generate your code once without loading the COFF file to the target.
Look at the generated file projectname.map, where projectname is the
name of your project, to see the memory range that the compiler uses.

From this list of allocated memory, you can determine the memory
ranges that you can use safely without overwriting the reserved
compiler sections.

You should examine the .map file for your project each time you change
the Simulink model associated with your project.

6-430

To Memory

Dialog
Box

Memory address (hex)
Specifies the address to which you are sending data from the code.
Enter the address as a hexadecimal value, without the leading
0x indicator. Any valid memory address works, as long as the
processor can write to it.

Data type
Sets the type for the data going to memory. Select one of the
following types:

• double — double-precision floating-point values. This is the
default setting and allows the full range of values representable

6-431

To Memory

in double-precision arithmetic as defined by the IEEE
specification.

• single — single-precision floating-point values whose range is
defined by the IEEE specification on single-precision values.

• uint8 — 8-bit unsigned integers. Input values range from 0
to 255.

• int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Use initial value
Select this option when you want to send a specific value to
memory during the first execution on your model. Enter your
desired value in Initial value.

Initial value
Enter the value to send to memory on the first execution of this
code. Enter a floating-point integer here. The block interprets the
value you enter as an integer. For example, to place the integer
value 100 in memory, enter 100 here. Note that the block does not
support MATLAB integer data types.

Use termination value
Select this option when you want to send a specific value to
memory during the last or final execution of your model. Enter
your desired value in Termination value.

Termination value
Enter the value to send to memory on the last execution of this
code. Enter a floating-point integer here. The block interprets the
value you enter as an integer. For example, to place the integer
value 100 in memory on the final execution pass, enter 100 here.

Real-time enabled
In basic terms, generated code executes as follows:

1 Initialize

6-432

To Memory

2 Start execution (your initial value is written to memory)

3 Output (execute loop for each time step)

4 Terminate execution (your termination value is written to
memory)

Selecting Real-time enabled causes the code to write data to
memory during the output phase of code execution. When you
clear this option, the code does nothing during the output phase
— it does not write data to the memory address you specify in
Memory address. You might clear Real-time enabled when
you want to write a value to memory only during the start phase
(or only during the terminate phase, or during both phases) but
not during output execution). The block input port disappears
when you clear this check box.

See Also From Memory

6-433

To Rtdx

Purpose Add RTDX communication channel to send data from target to MATLAB

Library RTDX Instrumentation in Target for TI C6000

Description When your Simulink model has this block in place, Real-Time Workshop
code generation inserts the C commands to create an RTDX output
channel on the target. The inserted code opens and enables the
channel with the name you specify in Channel name. You can open,
close, disable, and enable the channel from the host side afterwards,
overriding the target side status.

In the generated code from models with this block, you see a command
like

RTDX_enableOutput(&channelname)

where channelname is the name you enter in Channel name.

In simulations this block does not perform any operations. To Rtdx
blocks work only in code generation and when your model runs on your
target.

Using RTDX in your model involves:

• Adding one or more RTDX blocks to your model to prepare your target

• Downloading and running your model on your target

• Enabling the RTDX channels from MATLAB

• Using the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX

To see more details about using RTDX in your model, refer to Tutorial
1-2 — Using Links for RTDX in your Link for Code Composer Studio
documentation.

One mistake is to connect a To Rtdx block directly to a ADC block, or
another source block. Due to current RTDX timing constraints, the
generated code from this arrangement does not work as you expect.

6-434

To Rtdx

Look at the following model for an example that does not properly
transfer data.

Applications that you generate from models that contain the directly
connected blocks are likely to overrun because the sampling time of
the codec or source is much faster than RTDX processing time. RTDX
will not be able to keep up. This is true even if you do not generate
your application from Simulink.

Adding additional blocks can fix the problem. In the next model, adding
the Downsample block with 32 for K, the Downsample factor, allows
RTDX to return messages as expected.

6-435

To Rtdx

When you are using Link for CCS to transfer data from the target to
the host (MATLAB), this overrun is manifested by cc.rtdx.msgcount
eventually decreasing to zero.

You need to modify your application such that:

• Data going to the RTDX block channel is slowed down. For example,
use the Downsample block. Downsampling to 32 usually works fine.

• Give the RTDX more time to process a message transfer by decreasing
the size of the data (such as using short instead of int data types).

• Depending on the application type you are developing, you can use
the standard RTDX or the high-speed RTDX. If you are using video
processing using standard RTDX, you will not get the desired output.
Please refer to the TI documentation for more information.

To enable high-speed RTDX in Simulink:

- In your model, go to Simulation > Configuration Parameters.

- Select Real-Time Workshop on the left pane. Highlight the
Real-Time Workshop system target file options of the TI 6000
target.

- Select TIC6000 target selection on the left pane and on the right
pane, select Enable High-Speed RTDX.

If you are using Link for Code Composer Studio Development Tools,
you need to configure and cleanup RTDX properly before and after
executing your model or code. Refer to in Link for Code Composer
Studio documentation in the online Help system to see an example of
how to do this housekeeping task.

6-436

To Rtdx

Dialog
Box

Channel name
Defines the name of the output channel on the target DSP. Recall
that output channels refer to transferring data from the target to
the host (output from the target). To use this RTDX channel, you
enable and open the channel with the name, and send data from
the target to the host across this channel. Specify any name as
long as it meets C syntax requirements for length and character
content.

Enable blocking mode
Puts RTDX communications into blocking mode where the target
processor waits to continue processing until new data is available
from the To Rtdx block.

In blocking mode, writing a message is suspended while the
RTDX channel is busy, for example if a message is being written
in or out of the channel. While suspended, the code waits at the
RTDX_write call site until the channel is no longer busy. Note
that higher priority interrupts temporarily divert the program
execution from this call site. Eventually, program execution comes
back and waits until the channel stops writing.

In non blocking mode, writing a message is abandoned if the
RTDX channel is busy (when it is writing — the data is being

6-437

To Rtdx

written in or out of the channel). The code continues with the
current iteration.

Selecting blocking mode slows your processing while the processor
waits — if the previous message is not written before the next
write, your process stops. Enable blocking mode is selected by
default and is recommended for most operations.

Enable RTDX channel on start-up
When your application code includes RTDX channel definitions,
selecting this option enables the channels when you start the
channel from MATLAB. With this selected, you do not need to
use Link for Code Composer Studio Development Tools enable
function to prepare your RTDX channels. Note that the option
applies only to the channel you specify in Channel name. You do
have to open the channel.

See Also ccsdsp, From Rtdx, readmsg, writemsg

6-438

UDP Receive

Purpose Receive uint8 vector as UDP message

Library Host Communication Library in Target for TI C6000

Description A UDP message comes into this block from the transport layer. The
block passes the message to the next downstream block. One block
output is the data vector from the message. The second output is a flag
that indicates when a new UDP message is available.

Models can contain only one UDP Receive block.

This block issues a function call from the fcn port when a new UDP
packet becomes available. At the same time, it updates the signal going
out of the msgport with the contents of the UDP packet. It reads a single
UDP packet every sample hit. It does not attempt to receive multiple
UDP packets to fill the output vector. If the UDP packet size is greater
than the output port width parameter, UDP messages at the Msg port
are truncated. The part for the UDP packet that does not fit into the
Msg port is discarded as a result. The missing message content cannot
be retrieved. Conversely, if the UDP packet size is smaller than the Msg
port width specified, the portion of the output vector that does not fit
into the specified size is invalid data.

6-439

UDP Receive

Dialog
Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, not 0.0.0.0, directs
the block to accept messages from the specified address only.

IP port to receive from
Specify the port the block accepts messages from on this machine.
The other end of the communication, usually a UDP Send block,
sends messages to this port. The default value is 25000, but the
values range from 1 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you

6-440

UDP Receive

decide the message width. Set this to a value as large or larger
than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer in which UDP messages are stored
when received. 8192 bytes is the default size. You need a buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
The value entered here should always be greater than zero.
Setting this to a specific value, often large, can reduce the chances
that UDP messages get dropped. By default, the sample time is
0.01 seconds.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

6-441

UDP Send

Purpose Send UDP message

Library Host Communication Library in Target for TI C6000

Description The UDP send block receives a uint8 vector that it sends as a UDP
message to the host. Input must be in the form of a uint8 vector with
UDP format.

Models can contain only one UDP Send block.

Dialog
Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
Entering the address 255.255.255.255 tells the block to broadcast
the message to any listening IP address. Entering a specific IP

6-442

UDP Send

address limits the block to sending the message to the specified
address.

IP port to send to
Specify the port on the host to which the block sends the message.
Port numbers range from 1 to 65535. This port designation must
match the port number where you configure the C6000 target to
receive UDP messages.

Use the following local IP port
Specify the local IP port the block sends the message from.
Entering -1 (the default value) for this option allows the network
to select automatically the local IP port to use to send the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address here. If you enter a
port number in the UDP Receive block option IP port to receive
from, enter that port identifier here.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

6-443

UDP Send

6-444

A

Supported Hardware and
Issues

Supported Hardware for Targeting
(p. A-2)

Lists the hardware that Target for TI
C6000 supports. Includes comments
about supported operating systems
where needed.

Requirements for the DM642 EVM
(p. A-6)

Points out some details about using
the DM642 target.

Continuing Issues with Target for TI
C6000 (p. A-11)

Describes some important features
about targeting particular hardware.

A Supported Hardware and Issues

Supported Hardware for Targeting

In this section...

“Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP” on page A-3

“Supported Processors” on page A-4

Using the C6000 target in Real-Time Workshop, Target for TI C6000 supports
the following boards produced by TI and other manufacturers.

Supported Board
Designation Board Description

DM642 EVM DM642 Evaluation module for developing video
processing algorithms and applications

D.signT DSK-91c111 Ethernet adapter daughter card to use with the
C6416 and C6713 DSK targets. This card provides
support for TCP/IP and UDP communications.
Refer to “Configuring the D.signT DSK-91C111
to Use TCP/IP and UDP” on page A-3 for more
information.

TMS320C6416 DSK C6416 DSP Starter Kit. Does not work on
Microsoft Windows NT platforms. To use the UDP
and TCP/IP blocks with this board, you must
have a supported daughtercard—the D.signT
DSK-91c111 Daughter Card.

TMS320C6455 DSK C6455 DSP Starter Kit.

TMS320C6713 DSK C6713 DSP Starter Kit. Does not work on
Microsoft Windows NT platforms. To use the UDP
and TCP/IP blocks with this board, you must
have a supported daughtercard—the D.signT
DSK-91c111 Daughter Card.

TMDXPDK6727 C6727 Professional Audio Development Kit.

A-2

Supported Hardware for Targeting

Supported Board
Designation Board Description

C6xxx simulators in
CCS

Digital signal processor simulators in CCS. You
cannot run models on your simulator because
simulators do not simulate the codec on the board.
You can generate code to the simulators and use
CCS and RTDX links with them.

Custom boards based
on supported C6000
processors

Code generation for targets that are not explicitly
supported, but that use supported DSPs, such as
C6713 or C6416. Refer to “Supported Processors”
on page A-4 for the list of processors.

Configuring the D.signT DSK-91C111 to Use TCP/IP
and UDP
To use the D.signT DSK-91C111 with the required Texas Instruments
TMS320C6000 TCP/IP Stack, change the position of solder point jumper
JPINTPOL. Set the jumper to the “b” position from the default “a” position.
Refer to your TI TCP/IP Stack User’s Guide documentation for additional
information about configuring the daughter card.

To support code generation for your targets, Target for TI C6000 offers an
option for the C6000 target that provides a Real-Time Workshop target you
use to generate executable code that runs on the supported boards, or to build
a project in CCS IDE. You select this option when you set the simulation
parameters in Real-Time Workshop for your model.

Within the same C6000 target in Real-Time Workshop, the options let you
generate code specifically for any of the supported targets, or to build a project
in CCS.

When you set the simulation parameters for your model in Real-Time
Workshop, you can choose to generate target-specific executable code when
you use target-specific blocks in your Simulink model. Target specific blocks,
like the blocks in the C64x DSP library, use code optimized for your specified
target.

A-3

A Supported Hardware and Issues

Texas Instruments produces the evaluation modules and DSP starter kits to
help developers create digital signal processing applications for the Texas
Instruments digital signal processors.

You can create, test, and deploy your processing software and algorithms or
filters on the target processors without the difficulties inherent in starting
with the digital signal processor itself and building the support hardware to
test the application on the processor.

Instead, the development boards provide the input hardware, output
hardware, timing circuitry, memory, and power for the digital signal
processors. TI provides the software tools, such as the C compiler, linker,
assembler, and integrated development environment, for PC users to develop,
download, and test their algorithms and applications on the processors.

Supported Processors
Target for TI C6000 provides code generation for boards that use the following
Texas Instruments processors:

• C62x

- 6201

- 6202

- 6203

- 6204

- 6205

• C64x

- 6410

- 6411

- 6412

- 6413

- 6414

- 6415

A-4

Supported Hardware for Targeting

- 6416

- 6418

- 6455

- 6482

• C67x

- 6712

- 6713

- 6722

- 6726

- 6727

• DM64x

- DM640

- DM641

- DM642

A-5

A Supported Hardware and Issues

Requirements for the DM642 EVM

In this section...

“About DM642 EVM Board Revisions” on page A-6

“Setting Up Code Composer Studio for the DM642 EVM” on page A-7

“About the XDS560 PCI-Bus JTAG Scan-Based Emulator” on page A-8

“Configuring the Target Preferences Block for Your DM642 EVM” on page
A-9

“Configuring the DM642 EVM Video ADC Block” on page A-10

Certain requirements for the DM642 EVM differ from the other supported
targets. This section provides details about using both the DM642 EVM
hardware target and the simulator. Using the DM642 requires the following:

• DM642 EVM version identification

• CCS installation version 3.1 with DSP/BIOS 4.90

• XDS560 (high speed RTDX emulator) or XDS510 (Regular RTDX emulator,
if your model does not require high-speed RTDX capability)

• Device Driver Development Kit (DDK) patch as required by your DM642
version (refer to “Required DDK Versions for DM642 EVM Revisions” on
page A-8).

• TMS320DM642 Digital Media Development Kit (DMDK)

• To use the UDP and TCP blocks for the board, you must install the
TMS320C6000 TCP/IP Stack from Texas Instruments

• Projects must enable DSP/BIOS. Target for TI C6000does not support
operations on the DM642 EVM without DSP/BIOS.

About DM642 EVM Board Revisions
Working with DM642 EVM boards requires that you identify the board
revision that you own.

A-6

Requirements for the DM642 EVM

Identifying Your DM642 EVM Board Revision
Spectrum Digital has released three different versions of the DM642 EVM
board. DM642 EVM board Versions 1 and 2 are the same except for the CPU
clock speed. Version 2 uses a 720 MHz clock, rather than the 600 MHz clock
on Version 1. Both versions use Phillips SAA7115 video decoders.

Version 3 is a redesign of the board that uses TI TVP5146/5150 video decoders
and a CPU clock speed of 720 MHz. To use Version 3 boards, you must install
updated TI video drivers (included with TI Device Driver Developer’s Kit)
to match the new decoders.

Here is how you identify the correct version number of your board:

• Version 1 — Original board with 600 MHz DM642, Philips SAA7115 video
decoders. ASSY 506840 Rev. D on back of board, 50 MHz oscillator.

• Version 2 — Original board revised to use 720 MHz DM642, Philips
SAA7115 video decoders. ASSY 506840 Rev. D on back of board, 60 MHz
oscillator.

• Version 3 — Revised board with 720 MHz DM642, TI TVP5146/5150
video decoders and HD filters. ASSY 507340 Rev. B on back of board, 60
MHz oscillator.

Setting Up Code Composer Studio for the DM642 EVM
Your DM642 EVM requires a separate Code Composer Studio installation.
To use the EVM when you have more than one CCS installation, you need
to install the CCS for the DM642 EVM in a separate location. You cannot
merge your DM642 CCS installation with existing or other CCS installations.
Follow the installation guidelines provided by Texas Instruments when you
install CCS, to use your DM642 EVM.

Install the patch C6000-2.20.00-FULL-to-C6000-2.20.18-FULL.EXE as
directed by Texas Instruments.

Finally, install the Device Driver Development Kit patch
ddk-v1-10-00-23.exe.

A-7

A Supported Hardware and Issues

About the Device Driver Development Kit
To use Target for TI C6000 software with your DM642, you need to install
the Device Driver Developer Kit (DDK) patch that you get from Texas
Instruments.

While the DDK is optional for some DM642 operations, Target for TI C6000
requires the DDK for code generation. According to TI, the DDK is the TI
Device Driver Development Kit. Version 1.1 of the DDK includes device
drivers for the DM642 EVM peripherals that are used by many of the
examples and demos.

While the DDK is not required to run precompiled code, it is needed to rebuild
or develop code. You should install the DDK in the folder TI_DIR.

The DDK patch for CCS is an optional patch that Target for TI C6000 requires.

Required DDK Versions for DM642 EVM Revisions
There are three different versions of DM642 EVM board. They differ in
a number of areas including CPU speed and the video decoders used, as
described in “About DM642 EVM Board Revisions” on page A-6. To use
Target for TI C6000 with your DM642 EVM, you must install the correct DDK
version, shown here.

DM642 EVM Board
Revision Required DDK Version

Version 1 DDK 1.10

Version 2 DDK 1.11

Version 3 DDK 1.11

About the XDS560 PCI-Bus JTAG Scan-Based
Emulator
You need the XDS560 Emulator to use the DM642 with Target for TI C6000.
While the XDS510 Emulator might work, the target software has not been
tested with it.

A-8

Requirements for the DM642 EVM

Configuring the Target Preferences Block for Your
DM642 EVM
When you use the DM642EVM Target Preferences block, make sure that you
enter the CPU clock speed that matches the CPU clock on your board. The
figure below shows the correct setting of 600 for Version 1 boards in CPU
clock speed (MHz). For Version 2 and 3 boards, change the clock speed to
720.

A-9

A Supported Hardware and Issues

Configuring the DM642 EVM Video ADC Block
If you have a DM642 EVM Version 2 or 3 board, make sure that you have the
updated video drivers in your CCS installation directory and that you select
the correct decoder type TVP5146 when you use DM642 EVM Video ADC
blocks as shown in the following figure.

A-10

Continuing Issues with Target for TI C6000

Continuing Issues with Target for TI C6000
This section details some target operations that you should know about as
you use Target for TI C6000.

In this section...

“Setting the Clock Speed on the C6713 DSK” on page A-11

“Simulink Stop Block Works Differently When Not Using DSP/BIOS
Features” on page A-12

Setting the Clock Speed on the C6713 DSK
The C6713DSK PLL is not automatically set to the correct CPU Clock
frequency when you try to target the board. When you power-up your DSK, it
runs at a clock speed of 50 MHz. However, the C6713 is capable of running
at 225 MHz.

If you generate code incorporating the DSP/BIOS real-time operating system,
the PLL is automatically configured for you at run-time to use the correct
clock speed. If you are not using DSP/BIOS in your project, you must
manually configure the PLL to the correct clock rate before running your code.

Setting the PLL to Drive the CPU at 225 MHz
To set the C6713 DSK PLL to drive the CPU at 225 MHz, perform the
following steps. Be sure you have defined your GEL file for your DSK in the
Setup Utility for CCS.

1 Launch Code Composer Studio.

2 Open your C6713 DSK project with the GEL file.

3 Select GEL > Resets > InitPLL from the menu bar in CCS.

To make this happen whenever you open Code Composer Studio to use
your C6713 DSK, edit the file \ti\cc\gel\dsk6713.gel. Add the following
command to the StartUp() function:

init_pll();

A-11

A Supported Hardware and Issues

This tells the GEL file to initialize the PLL to operate at 225 MHz.

On the DM642 EVM, ADC-DAC Loopback Does Not Display An
RGB Image Correctly After Power-Up
When you set up the DM642 EVM to use loopback from the ADC to the DAC,
the DAC block does not reproduce the captured image correctly immediately
after you power up the board. Colors in the image are not shown correctly.

To get a clean image, reload the program to the target and run the program
again. This also happens with the examples Texas Instruments ships with
the DM642 EVM product.

Simulink Stop Block Works Differently When Not
Using DSP/BIOS Features
If you are using the Simulink Stop block in your model, but you are not using
DSP/BIOS features, your model might take longer to stop when it is running
on the target than if you are using DSP/BIOS.

The condition the model uses to detect the stop processing flag is different
when you do not use DSP/BIOS. The result is that the model may not detect
and respond to the flag as promptly, taking longer to stop the running model
on the target.

A-12

Index

IndexA
adding DSP/BIOS to generated code 2-54
Archive_library 2-62
asynchronous scheduling 2-32

B
block limitations using model reference 2-64
Block Processing block 6-2
block recommendations 2-72
blocks

C62x 5-3
DM642 5-8
RTDX 5-2
use in target models 2-72

blocks to avoid in models 2-72
build configuration

compiler options, default 2-60
default 2-60
MW_custom 2-60

build directory
contents of 2-84
naming convention 2-75

building models
use C62x DSP Library blocks 4-10

Byte Pack block 6-12
Byte Reversal block 6-15
Byte Unpack block 6-17

C
C6000 EDMA block 6-20
C6000 IP Config block 6-30
C6000 model reference 2-61
C6000 Target

code generation options 2-54
run-time options 2-57
targeting Code Composer Studio 2-91

C6000 target preferences block 6-275
C6000 TCP/IP Receive block 6-35

C6000 TCP/IP Send block 6-41
C6000 UDP Receive block 6-44
C6000 UDP Send block 6-48
C62x Autocorrelation block 6-51
C62x Bit Reverse block 6-53 6-55
C62x Block Exponent block 6-55
C62x blocks 5-3
C62x Complex FIR block 6-56
C62x Convert Floating-Point to Q.15 block 6-58
C62x Convert Q.15 to Floating-Point block 6-59
C62x DSP Library blocks

building models 4-10
choosing blocks to optimize code 4-11
common characteristics 4-4
Q format notation 4-6
using source and sink blocks 4-11

C62x FFT block 6-60
C62x General Real FIR block 6-62
C62x LMS Adaptive Filter block 6-64
C62x Matrix Multiplication block 6-68
C62x Matrix Transpose block 6-72
C62x Radix-2 FFT block 6-73
C62x Radix-2 IFFT block 6-75
C62x Radix-4 Real FIR block 6-77
C62x Radix-8 Real FIR block 6-79
C62x Real Forward Lattice All-Pole IIR

block 6-81
C62x Real IIR block 6-83
C62x Reciprocal block 6-86
C62x Symmetric Real FIR block 6-87
C62x Vector Dot Product block 6-92
C62x Vector Maximum Index block 6-93
C62x Vector Maximum Value block 6-94
C62x Vector Minimum Value block 6-95
C62x Vector Multiply block 6-96
C62x Vector Negate block 6-97
C62x Vector Sum of Squares block 6-98
C62x Weighted Vector Sum block 6-99
C6416 DSK ADC block 6-120
C6416 DSK DAC block 6-124

Index-1

Index

C6416 DSK DIP Switch block 6-127
C6416 DSK LED block 6-132
C6416 DSK Reset block 6-134
C6416DSK target preferences block 6-101
C6455 SRIO Config block 6-155
C6455 SRIO Receive block 6-158
C6455 SRIO Transmit block 6-165
C6455DSK target preferences block 6-135
C64x Autocorrelation block 6-169
C64x Bit Reverse block 6-171 6-173
C64x Block Exponent block 6-173
C64x Complex FIR block 6-174
C64x Convert Floating-Point to Q.15 block 6-176
C64x Convert Q.15 to Floating-Point block 6-177
C64x FFT block 6-178
C64x General Real FIR block 6-180
C64x LMS Adaptive Filter block 6-182
C64x Matrix Multiplication block 6-186
C64x Matrix Transpose block 6-190
C64x Radix-2 FFT block 6-191
C64x Radix-2 IFFT block 6-193
C64x Radix-4 Real FIR block 6-195
C64x Radix-8 Real FIR block 6-197
C64x Real Forward Lattice All-Pole IIR

block 6-199
C64x Real IIR block 6-201
C64x Reciprocal block 6-204
C64x Symmetric Real FIR block 6-205
C64x Vector Dot Product block 6-210
C64x Vector Maximum Index block 6-211
C64x Vector Maximum Value block 6-212
C64x Vector Minimum Value block 6-213
C64x Vector Multiply block 6-214
C64x Vector Negate block 6-215
C64x Vector Sum of Squares block 6-216
C64x Weighted Vector Sum block 6-217
C6713 DSK

configure 2-87
confirming proper configuration 2-70

general code generation options 2-53
start/stop models 2-68 2-90
target options 2-47
TLC debugging options 2-51
tutorial about multirate applications 2-74

C6713 DSK ADC block 6-238
C6713 DSK blocks

tutorial 2-74
C6713 DSK DAC block 6-242
C6713 DSK DIP Switch block 6-244
C6713 DSK directories

build 2-75
working 2-75

C6713 DSK LED block 6-249
C6713 DSK Reset block 6-251
C6713DSK target preferences block 6-219
C6726PADK target preferences block 6-252
CCS IDE

create projects for the IDE 2-91
Code Composer Studio 2-91
configure the software timer 6-103 6-137 6-221

6-255 6-278 6-298 6-346 6-412
configure your C6713 DSK for Target for TI

C6000 2-87
confirm your C6713 DSK configuration 2-70
convert data types 4-10
CPU clock speed 6-103 6-137 6-221 6-255 6-278

6-298 6-346 6-412
CPU Timer block 6-273
current CPU clock speed 6-103 6-137 6-221 6-255

6-278 6-298 6-346 6-412
custom C6000 target

about 2-98
preferences block 2-98
setup 2-98

custom hardware guidelines 2-93
custom hardware, target 2-93
custom_MW compiler options 2-60

Index-2

Index

D
default build configuration 2-60
default compiler options 2-60
discrete solver 2-44
DM642 blocks 5-8
DM642 EVM Audio ADC block 6-316
DM642 EVM Audio DAC block 6-319
DM642 EVM FPGA GPIO Read block 6-321
DM642 EVM FPGA GPIO Write block 6-323
DM642 EVM LED block 6-338
DM642 EVM Reset block 6-343
DM642 EVM Video ADC block 6-325
DM642 EVM Video DAC block 6-334
DM642 EVM Video Port block 6-339
DM642EVM target preferences block 6-296
DM6437EVM target preferences block 6-344
DSP/BIOS

added files 3-10
adding to generated code 2-54
files removed from project 3-10
to enable 3-27

DSP/BIOS Hardware Interrupt block 6-363
DSP/BIOS Task block 6-367
DSP/BIOS Triggered Task block 6-369
DSP/BIOS, enabling 3-27

E
enabling DSP/BIOS 3-27
execution in timer-based models 2-33

F
files added to DSP/BIOS project 3-10
files removed from DSP/BIOS projects 3-10
fixed-point numbers 4-5

signed 4-6
fixed-step solver 2-44
From Memory block 6-371
From Rtdx block 6-374

G
generate optimized code 2-54

H
Hardware Interrupt block 6-379
hardware requirements for Target for TI

C6000 1-8
hardware, custom 2-93
hardware, guidelines for using custom

boards 2-93

I
Idle Task block 6-382
inaccurate profile information 3-15
Incorporate DSP/BIOS option 2-54
initialized memory 2-97
inline Signal Processing Blockset functions

option 2-54

M
management, memory 2-97
map memory 2-96
map, memory 2-96
memory

initialized 2-97
management 2-97
map 2-96
section 2-97
segment 2-97
uninitialized 2-97

Memory Allocate block 6-385
Memory Copy block 6-391
memory maps 2-96
model execution 2-32
model reference 2-61

about 2-61
Archive__library 2-62

Index-3

Index

block limitations 2-64
modelreferencecompliant flag 2-64
setting build action 2-62
target preferences blocks 2-63
using 2-62

model schedulers 2-32
modelreferencecompliant flag 2-64
MW_custom build configuration 2-60

O
optimization,target specific 2-54
optimize code 4-11
OS requirements for Target for TI C6000 1-8

P
profile generated code 3-12
profile report

about 3-12
correcting inaccurate profile

information 3-15
CPU clock speed 3-21
maximum percent of interrupt interval (Max

%) 3-21
maximum time spent in this subsystem per

interrupt (Max time) 3-21
number of interrupts counted 3-21
profiling subsystems 3-13
reading 3-19
sample 3-19
STS objects 3-21
timing details 3-14
to generate 3-22

projects, create for CCS 2-91

Q
Q format notation 4-6

R
Real-Time Workshop solver options 2-44
RTDX blocks 5-2
run the DSK confidence test 2-70

S
section,memory 2-97
segment, memory 2-97
select blocks for models 2-72
signed fixed-point numbers 4-6
simulator

device cycle accurate 2-6
general use 2-6
use simulators for development 2-6
use with DSP/BIOS 2-6
use with RTDX 2-6

simulators, about 2-6
solver option settings 2-44
source and sink blocks 4-11
suitable applications for Target for TI C6000 1-3
synchronous scheduling 2-33

T
table of blocks to avoid in models 2-72
target Code Composer Studio 2-91
target configuration options

build action 2-58
generate code only 2-50
make command 2-50
overrun action 2-59
system target file 2-48
template makefile 2-49

target custom hardware 2-93
Target for TI C6000

about 1-2
create Simulink model for targeting 2-71
expected background for use 1-4
hardware and OS requirements 1-8

Index-4

Index

information for new users 1-4
requirements for TI software 1-9
suitable applications 1-3
use C6713 DSK blocks 2-24

target preferences blocks in referenced
models 2-63

target specific optimization 2-54
TCI6482 DSK target preferences block 6-410
timer, configure 6-103 6-137 6-221 6-255 6-278

6-298 6-346 6-412
timer-based models, execution 2-33
timer-based scheduler 2-33
timing 2-32
To Memory block 6-429
To Rtdx block 6-434

tutorial for C6713 DSK blocks 2-74

U
UDP Receive block 6-439
UDP Send block 6-442
uninitialized memory 2-97
use blocks for the C6713 DSK 2-74
use C62x DSP Library blocks 4-1
use C6713 DSK blocks 2-74

W
working directory 2-75

Index-5

	toc
	Getting Started
	What Is Target for TI C6000?
	Overview of Target for TI C6000
	Suitable Applications

	Using This Guide
	Expected Background
	If You Are a New User
	If You Are an Experienced User

	Configuration Information
	Platform Requirements
	Hardware and Operating System Requirements
	Texas Instruments Software

	Targeting C6000 DSP Hardware
	Introduction to Targeting
	Overview
	About the Tutorials

	TI C6000 and Code Composer Studio IDE
	Using Code Composer Studio with Target for TI 6000
	Supported Boards and Simulators
	About Simulators
	Using a Simulator
	Using RTDX with a Simulator

	Typical Hardware Setup for C6713 DSK in Models
	Typical Hardware Setup for RTDX in Models

	Targeting Tutorial — Single Rate Application
	Overview
	Building the Audio Reverberation Model
	Adding C6713 DSK Blocks to Your Model
	Configuring Target for TI C6000 Blocks
	Specifying Configuration Parameters for Your Model
	Setting Simulink Configuration Parameters
	Setting Real-Time Workshop Target Build Options
	Building and Executing Your Model on Your C6713 DSK
	Testing Your Audio Reverb Model

	Using the C6000lib Blockset
	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Synchronous Scheduling
	Asynchronous Scheduling
	Asynchronous Scheduler Examples
	Before
	After
	Model Inside the Function Call Subsystem Block

	Uses for Asynchronous Scheduling
	Free-Running DSP/BIOS Task
	Idle Task
	Hardware Interrupt Triggered DSP/BIOS Task
	Hardware Interrupt Triggered Task

	Scheduling Considerations

	Setting Real-Time Workshop Options for C6000 Hardware
	Setting Real-Time Workshop Pane Options
	Accessing the Options
	Target Selection
	System target file

	Documentation
	Generate HTML report
	Launch report automatically

	Build Process
	Template makefile
	Make command

	Custom Storage Class
	Generate code only

	Debug Pane Options
	Optimization Pane Options
	Link for CCS Pane Options
	Target Selection
	Code Generation
	Project Options
	Compiler options string
	Linker options string
	System stack size (bytes)
	Runtime
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function

	Overrun Indicator and Software-Based Timer
	Target for TI C6000 Default Project Configuration — custom_MW
	Default Compiler Build Options in custom_MW

	Model Reference and Target for TI C6000
	Overview
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference with Target for TI C6000
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Targeting Supported Boards
	Overview
	Typical Targeting Process
	Targeting the C6713 DSP Starter Kit
	Starting and Stopping DSP Applications on the C6713 DSK

	Configuring Your C6713DSK
	Confirming Your C6713DSK Installation

	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting
	Blocks to Avoid in Your Models

	Targeting Tutorial II — A More Complex Application
	Overview
	Working and Build Directories
	Setting Simulation Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build Directory

	Targeting Your C6713 DSK and Other Hardware
	Overview
	Configuring Your C6713 DSK
	Confirming Your C6713 DSK Installation
	Running Models on Your C6713 DSK
	Starting and Stopping DSP Applications on the C6713 DSK

	Creating Code Composer Studio Projects Without Building
	Introduction
	Creating Projects in CCS Without Loading Files to Your Target

	Targeting Custom Hardware
	Overview
	Typical Targeting Process
	Memory Maps

	Targeting a Custom Target
	Memory Pane
	Sections Pane
	Physical Memory Options
	Name
	Address
	Length
	Contents
	Add
	Remove
	Create Heap
	Heap Size
	Define Label
	Heap Label
	Enable L2 Cache
	L2 Cache Size

	Sections Pane
	Compiler Sections
	Description
	Placement
	DSP/BIOS Sections
	Description
	Placement
	DSP/BIOS Object Placement
	Custom Sections
	Name
	Placement
	Add
	Remove

	To Create Memory Maps for Targets

	Using Target for TI C6000 with Real-Time Workshop Embedded Coder
	Introduction
	To Use the Embedded Coder Target File

	Targeting with DSP/BIOS Options
	Introducing DSP/BIOS
	DSP/BIOS and Targeting Your TI C6000 DSP
	Introduction
	DSP/BIOS Configuration File
	Memory Mapping
	Hardware Interrupt Vector Table
	Linker Command File

	Code Generation with DSP/BIOS
	Overview
	Generated Code Without and With DSP/BIOS
	Example — c6713dskwdnoisf.pjt code Generated Without DSP/BIOS
	Example — c6713dskwdnoisf.pjt Code Including DSP/BIOS

	Profiling Generated Code
	Overview
	Profiling Subsystems
	Details About Timing and Profiling
	Correcting Inaccurate Profile Information Due to Timing

	Profiling Multitasking Systems
	The Profiling Report
	Interrupts and Profiling
	Reading Your Profile Report
	Sample of a Profile Report
	Report Heading Information
	Report Subsections and Contents

	Definitions of Report Entries
	System name
	Number of Iterations Counted
	CPU Clock Speed
	Maximum Time Spent in This Subsystem per Interrupt
	Maximum Percent of Base Interval
	STS Objects

	Profiling Your Generated Code
	To Enable Profiling for Your Generated Code
	To Create Atomic Subsystems for Profiling
	To Build and Profile Your Generated Code

	Using DSP/BIOS with Your Target Application
	Enabling DSP/BIOS When You Generate Code

	Using the C62x and C64x DSP Libraries
	About the C62x and C64x DSP Libraries
	C62x DSP Library
	C64x DSP Library
	Supported Platforms
	Characteristics Common to C62x and C64x Library Blocks

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Blocks — By Category
	Target Preferences (c6000tgtprefs)
	RTDX Instrumentation (rtdxblocks)
	C62x DSP (tic62dsplib)
	Conversions
	Filters
	Math and Matrices
	Transforms

	C64x DSP (tic64dsplib)
	Conversions
	Filters
	Math and Matrices
	Transforms

	C6416 DSK (c6416dsklib)
	C6455 EVM (c6455evmlib)
	C6713 DSK (c6713dsklib)
	DM642 EVM (dm642evmlib)
	C6000 DSP Core Support (c6000dspcorelib)
	Host Communication (hostcommlib)
	C6000 DSP Communication (targetcommlib)
	DSP/BIOS (dspbioslib)

	Blocks — Alphabetical List
	Supported Hardware and Issues
	Supported Hardware for Targeting
	Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP
	Supported Processors

	Requirements for the DM642 EVM
	About DM642 EVM Board Revisions
	Identifying Your DM642 EVM Board Revision

	Setting Up Code Composer Studio for the DM642 EVM
	About the Device Driver Development Kit
	Required DDK Versions for DM642 EVM Revisions

	About the XDS560 PCI-Bus JTAG Scan-Based Emulator
	Configuring the Target Preferences Block for Your DM642 EVM
	Configuring the DM642 EVM Video ADC Block

	Continuing Issues with Target for TI C6000
	Setting the Clock Speed on the C6713 DSK
	Setting the PLL to Drive the CPU at 225 MHz
	On the DM642 EVM, ADC-DAC Loopback Does Not Display An RGB Image

	Simulink Stop Block Works Differently When Not Using DSP/BIOS Fe

	Index

	tables
	Prerequisites for Using Target for TI C6000 Software for Targeti
	Required TI Software for Targeting Your TI C6000 Hardware
	Option Settings to Simulate the User DIP Switches on the C6416 D
	Output Values From The User DIP Switches on the C6416 DSK
	Option Settings to Simulate the User DIP Switches on the C6713 D
	Output Values From The User DIP Switches on the C6713 DSK

